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Abstract

observed in clinical practice.

that is also documented in the current medical practice.

Background: Dual processing theory of human cognition postulates that reasoning and decision-making can be
described as a function of both an intuitive, experiential, affective system (system ) and/or an analytical, deliberative
(system II) processing system. To date no formal descriptive model of medical decision-making based on dual
processing theory has been developed. Here we postulate such a model and apply it to a common clinical
situation: whether treatment should be administered to the patient who may or may not have a disease.

Methods: We developed a mathematical model in which we linked a recently proposed descriptive psychological
model of cognition with the threshold model of medical decision-making and show how this approach can be
used to better understand decision-making at the bedside and explain the widespread variation in treatments

Results: We show that physician’s beliefs about whether to treat at higher (lower) probability levels compared to
the prescriptive therapeutic thresholds obtained via system Il processing is moderated by system | and the ratio of
benefit and harms as evaluated by both system | and Il. Under some conditions, the system | decision maker’s
threshold may dramatically drop below the expected utility threshold derived by system II. This can explain the
overtreatment often seen in the contemporary practice. The opposite can also occur as in the situations where
empirical evidence is considered unreliable, or when cognitive processes of decision-makers are biased through
recent experience: the threshold will increase relative to the normative threshold value derived via system Il using
expected utility threshold. This inclination for the higher diagnostic certainty may, in turn, explain undertreatment

Conclusions: We have developed the first dual processing model of medical decision-making that has potential to
enrich the current medical decision-making field, which is still to the large extent dominated by expected utility
theory. The model also provides a platform for reconciling two groups of competing dual processing theories
(parallel competitive with default-interventionalist theories).

Background

Dual processing theory is currently widely accepted as a
dominant explanation of cognitive processes that charac-
terizes human decision-making [1-9]. It assumes that
cognitive processes are governed by so called system I
(which is intuitive, automatic, fast, narrative, experiential
and affect-based) and system II (which is analytical, slow,
verbal, deliberative and logical) [1-10]. The vast majority
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of existing models of decision-making including expected-
utility theory, prospect theory, and their variants assume a
single system of human thought [11]. Recently, formal
models for integrating system I with system II models
have been developed [3,11]. One such attractive
model-Dual System Model (DSM)- has been devel-
oped by Mukherjee [11]. Here, we extend Mukherjee’s
DSM model to medical field (DSM-M) by linking it
to the threshold concept of decision-making [12-15].
We also take into account decision regret, as an ex-
emplar of affect or emotion that is involved in system
I decision-making [2], and which is of particular rele-
vance to medical decision-making [16-19]. Regret was
also selected for use in our model because any
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“theory of choice that completely ignores feeling such
as the pain of losses and the regret of mistakes is not
only descriptively unrealistic but also might lead to
prescriptions that do not maximize the utility of out-
comes as they are actually experienced” [1,20].

As more than 30% of medical interventions are cur-
rently not appropriately applied, mostly as over - or-
undertreatment [21-23], we illustrate how the DSM-M
model may be used to explain the practice patterns seen
in the current medical practice. Our DSM-M model is
primarily an attempt to describe how medical decisions
are made. As a descriptive model its validation will re-
quire comparing its outputs to actual choices made by
patients and clinicians and their verbalized reactions to
our model. We conclude the paper by providing some
testable empirical predictions.

Methods
A dual system model
Building on the previous empirical research, which has
convincingly showed that human cognition is deter-
mined by both system I and system II processes
[1,2,5,24,25]. Mukherjee recently developed a formal
mathematical model, which assumes parallel functioning
by both systems, while the final decision is a weighted
combination of the valuations from both systems based
on the value maximization paradigm (Figure 1) [11].
(NB. In this paper we employ terms system I and system
II as popularized by Kahneman [1,2] although some
authors prefer to talk about type 1 and 2 processing as it
is almost certain that human cognition is not organized
in distinctly separated physical systems [5,26,27]).
Mukherjee’s dual system model (DSM) assumes that
evaluation of risky choice (C) is formed by the combined
input of system I and system II into a single value and
can be formulated as follows:

E(C) =yVi(C) + (1 = y)Vu(C)
1
=y Vi) + (= kY pVals) ()
Where C represents a decision-making situation

(“choice”), n - number of outcomes, p; - probability of
the i outcome, x;, of the selected choice. V; represents
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valuation of decision under autonomous, intuitive, sys-
tem I-based mode of decision-making and V7, which
can be a utility function, represents valuation under a
deliberative, rule-based, system II mode of decision-
making. k-is a scaling constant, and y [0 to 1] is the
weight given to system I and can be interpreted as the
relative extent of involvement of system I in the
decision-making process [11]. System II is not split into
two subsystems advocated by some [5], but is assumed
to adhere to the rationality criteria of expected utility
theory (EUT) as also advocated by modern decision sci-
ence [11,28]. y is assumed to be influenced by a number
of processes that determine system I functioning.
Mukherjee emphasized the following factors as the im-
portant determinants of system I functioning [11]: indi-
vidual decision-making and thinking predispositions
[ranging from expected utility theory (EUT) “maximi-
zers” to system I driven “satisficing” with no regard to
probabilities but with editing or selection of outcomes of
interest] [29], affective nature of outcomes (the higher
the affective nature of outcomes, the higher is y) and
framing and construing the decision-making task (deci-
sions for the self will likely have higher y, as well as deci-
sion problems that are contextualized and those
requiring immediate resolution or are made under time
pressure; the last four describe circumstances character-
istic of medical decision-making). Easily available infor-
mation, our previous experience, the way in which
information is processed (verbatim vs. getting the “gist”
of it) [30] as well as memory limitations [31] are also
expected to affect y. y is, therefore, expected to be
higher when information about probabilities and out-
comes are ambiguous or not readily available, or when a
very severe negative prior outcome is recalled [2,32,33].
On the other hand, when such data are available their
joint evaluation by system II will reduce y [11]. In gen-
eral, the factors that define the process of system I can
be classified under 4 major categories: a) affect, b) evolu-
tionary hard-wired processes, responsible for automatic
responses to potential danger in such a way that system
I typically gives higher weight to potentially false posi-
tives than to false negatives (i.e. humans are cognitively
more ready to wrongly accept the signal of potential
harms than one that carries the potential of benefit),

Valuation by intuitive, experiential,

/ affective cognitive system
(System I); V, (C)

Final choice

underuncertainty

Ve=Vi(C)+V,(C)

(System 11); V,, (C)

Valuation by deliberative, reflective
analytical/logical cognitive system

Figure 1 Model of decision-making using dual processing cognitive processes (after Mukherjee [11]).
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(c) over-learned processes from system II that have been
relegated to system I (such as the effect of intensive
training resulting in the use of heuristics, or “rules of
thumb” or practice guidelines as one of the effort-saving
cognitive strategies. NB although guidelines may be the
products of analytic system II processes their applica-
tions tends to be a system I process.), and (d) the effects
of tacit learning [5].

Mukherjee’s DSM model draws upon empirical evidence
demonstrating that decision-makers in an affect-rich con-
text are generally sensitive only to the presence or absence
of stimuli, while in affect-poor contexts they rely on sys-
tem II to assess the magnitude of stimuli (and probabil-
ities) [24]. Hence, the salient feature of the model is that
that system I recognizes outcomes only as being possible
or, not. Every outcome that remains under consideration
gets equal weight in system I. On the other hand, system
II recognizes probabilities linearly without distortions,
according to the expected utility paradigm.

As a result, dual valuation processing often generates
instances where subjective valuations are greater at
lower stimulus magnitudes (i.e. when decision-making
relies on feeling, or evolutionary hard-wired processes
such as when the signal may present danger) while ra-
tional calculation produces greater value at high magni-
tudes [11]. DSM is capable of explaining a number of
the phenomena that characterize human decision-
making such as a) violation of nontransparent stochastic
dominance, b) fourfold pattern of risk attitude, c) ambi-
guity aversion, d) common consequences effect, ) com-
mon ratio effect, f) isolation effect, g) and coalescing
and event-splitting effect [11].

Under the realistic assumption that outcomes are posi-
tive (i.e., utilities >0, which is particularly applicable to
medical setting) and power value functions, V;(x) = ™,
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and Vy(x) =x for system I and system II, respectively,
DSM can be re-written as:

VIC) =y S+ (1= kY pi )

where 0<m;<1 Note that x}" satisfies risk aversion for
gains and risk seeking for losses and that the term for
system II py; is linear without risk distortions.

As noted by Mukherjee [11], the estimation of the
parameters in Equation 2) is a measurement exercise,
which needs to be evaluated in the future empirical re-
search. Consequently, the functions Vi(x) and Vi(x)
could be changed, depending on the decision-making
setting and decision-maker’s goals. Similarly, parameter
m may not be the same for all outcomes.

Modification of DSM for medical decision-making
We will consider a typical situation in clinical decision-
making where a doctor has to choose treatment (Rx) vs.
no treatment (NoRx) for disease (D) which is present
with the probability p. [Note than NoRx represents a
competing treatment alternative and may include a dif-
ferent treatment (Rx2)] [12,34]. Each decision results in
outcomes that have a certain value, x;. The model is
shown in the Figure 2. As noted above, the system I
recognizes outcomes only as being possible (or not), and
is thus insensitive to exact probabilities. Every outcome
with non-zero probability gets equal weight in system 1.
Hence, in a two-alternative choice, each probability is
equal to 0.5 under system I. System II recognizes prob-
abilities without distortions, as would be expected
according to EUT.

We posit that among the emotions that can influence
valuation of outcomes in system I processing, regret plays

competing treatment alternative may include Rx or NoRx). Rg- regret.

Disease (D+) 4 _
systeml /g5 X1 I Rg[Rx,D+] =0
Y “ NoDiscasc (D-) 4 i i
Rxl 0.5 15" Ry =i —a"
/ Disease (D+) x
| \ System Il ) 7 owm 1
1-— Y ‘NuD'isﬂsc(D-) .
Decision 1-p =
Disease (D+)
systeml /o5 x;n' Rg[NoRx,D+] = x;n’ —x;n’

\ / Y .(\No Diw;sc D)

\NoRx or Rx2 0.5 © o
Disease (D+)
\ System I I X3
S =y No Discasc
L=y bl G’ : L2 T Xy
P

Figure 2 Dual processing model of decision-making as applied to a clinical dilemma whether to treat (Rx) the patient with disease
(D+) or not. The patient may or may not have a disease (probability p). Regret is assumed to operate at the level of system | only. (Note that

x" Rg[NoRx,D=]=0
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an important role [1,2], while system II processes are domi-
nated by rational, analytical deliberations according to EUT
[11]. We can define regret (Rg) as the difference (loss) in
the utilities of the outcome of the action taken and that of
the action we should have taken, in retrospect [16-19,35]
but operating at the system I level only (see Figure 2).
Hence, we have the following value functions (see
Additional file 1: Appendix for detailed derivation):

Vi(Rx, D+) = Rg[Rx, D+] = 0;
Vi(NoRx,D+) = Rg[NoRx,D+] = x5 — x|";
Vir(Rx, D+) = x1 ;
V[[(NOR?C, D+) = X3,

Vi(Rx,D—) = Rg[Rx,D—] = x5 — x}}"
Vi(NoRx, D—) = Rg[NoRx, D—] = 0;

Vi (Rx, D—) = x3;
Vir(NoRx, D—) = xy4;

Overall valuation of decision to treat (Rx) is equal to:

V(Ry) = %(VA(Rx,D+) 4 Va(Rx, D—))
+(1 - y)k(pVp(Rx, D+)
+(1 —p)Vp(Rx, D—))

=20 =) + (1= y)klpm + (1= p)]
And
V (NoRx) = g(vA (NoRx, D+) + V4(NoRx, D—))
+(1 — y)k(pVp(NoRx, D+)

+ (1 — p)Vp(NoRx, D—))

=265 =)+ (L= )klpws + (1 - p

The difference in the outcomes of treating and not treat-
ing patient with disease are equal to the net benefit of
treatment (B) [13,14,36]; the difference in outcomes of not
treating and treating those patients without disease is
defined as net harms (H) [13,14,36]. Note that benefits
and harms can be expressed in the various units (such as
survival, mortality, morbidity, costs, etc.) and can be for-
mulated both as utilities and disutilities [13,14,36]. As
explained above, we further assume that valuation of net
benefits and net harms by system I differs from system II.
Hence, under system II, we replace net benefit and net
harms using EUT definitions:B;; = x; — x3 and net harms
Hj; = x4 — x3. Under system I, we define B; = «]" — 3",
and H; =xy" — 5" . Solving for p (the probability of
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disease at which we are indifferent between Rx and
NoRx), we obtain: (Equation 3)

_ (1 — Y)I(HI — % [BI — H[]

(1 —y)k[By + Hy]
)4 B; — H;

1+11.;T[,1,_2k(1 —y)Bu + Hy

- <1i2> {HZ(lyy) (1];111) <1 f;’)]

g ()02 o

This means that if the probability of disease is above p,
the decision-maker favors treatment; otherwise, a compet-
ing management alternative (such as “No Treatment”)
represents the optimal treatment strategy. Note that k can
be typically set at 1, as we do it here. Also note that the
first part of equation is equivalent to the threshold expres-
sion described in EUT framework [13,14,36]; the second
expression modifies system II's EUT-based decision-mak-
ing process in such a way that if benefits are experienced
higher than harms, the threshold probability is always
lower than EUT threshold. However, if a decision-maker
experiences H>B;, the threshold probability is always
higher than the EUT threshold (see below for discussion
in the context of medical example). Note that y and the

H

ratio ;- only contribute to the extent of magnitude the

dual threshold is above or below the classic EUT thresh-
old. That is, y and the ratio fTI’I do not change the quality
of relationship between dual threshold and EUT thresh-
old: whether dual threshold will be above or below the
EUT threshold depends only on a % ratio.

It should be noted that the identical derivations can be
obtained by applying the concept of expected regret
(instead of EUT) [16-19,35]. Although it can be argued that
regret is a powerful emotion influencing all cognitive pro-
cesses (as so called, “cognitive emotion”) [37,38], and so it
may function at level of both system I and system II [39],
most authors recognize the affect value of regret [2,10].
Hence, we assumed that regret functions at system I level
[2]. Therefore, in our model we restrict the influence of re-
gret to system I. Incidentally, our Equation 3) can also be
derived from the general Mukherjee’s DSM model even if
regret is not specifically invoked [11].

Although Equation 3) implies exact calculations, it
should not be understood as one that provides precise
mathematical account of human decision-making. Rather,
it should be considered more as a semi-quantitative or
qualitative description of the way physicians may make
their decisions. First, this is because system I does not per-
form exact calculations, but rather relies on “gist” [30,31]
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for assessment of benefits and harms in more qualitative
manner. The mechanism depends on associations, emo-
tions (so called, “risk as feelings” estimates [10]), as well as
memory, and experience [2,5,8,31]. In this sense, the sec-
ond part of Equation 3) that relies on system I can be
understood as the qualitative modifier (“weight”), which,
depending on the system I's estimates of benefits and
harms increases or decreases the first part of equation
(which is dependent on system’s II precise usage of evi-
dence for benefits and harms). Second, the threshold
probability itself should be considered as an “action
threshold”- at some point, a physician decides whether to
administer treatment or not. Typically, she contrasts the
estimated probability of disease against the threshold and
acts: if the probability of disease is above the “action
threshold”, the physician administers the treatment; if it is
below, she decides not to give treatment. So, one way to
interpret Equation 3) is to consider physician’s estimate of
“gist” of the action threshold: if in her estimation, overall
benefits of treatment outweigh harms, and she considers
that it is “likely” that the probability of disease is above the
threshold probability, then she would act and administer
treatment. If the physician assesses that it is “unlikely” that
the probability disease is above the “action threshold”,
then she would not prescribe the treatment.

The behavior of DSM-M model

The exact cognitive mechanisms that underlie dual system
processes are not fully elucidated. As discussed through-
out this paper, many factors affect dual processes reason-
ing leading to suggestions that these processes should be
grouped according to the prevailing mechanisms [27]. Fo-
cusing on each of these processes may lead to specific the-
oretical proposals. Our goal in this paper is to provide
overarching cognitive architecture encompassing general
features of the majority existing theoretical concepts, while
at the same time concentrating on specifics of medical de-
cision-making. In general, dual processing theories [27]
fall into two main groups [27,40] parallel competitive the-
ories and default-interventionalist theories. The parallel-
competitive theories assume that system I and II processes
proceed in parallel, each competing for control of the re-
sponse [27]. If there is a conflict, it is not clear which
mechanism is invoked to resolve the conflict [27]. On the
other hand, default-interventionist theories postulate that
system I generates a rapid and intuitive default response,
which may or may not be intervened upon by subsequent
slow and deliberative processed of system II [2,5,27]. This
can be further operationalized via several general mechan-
isms that have been proposed in the literature:

1) Mukherjee’s additive model as described above [11].
It can be categorized as a variant of parallel-
competitive theory as it assumes that system I and II
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processes proceed in parallel, but does include
parameter y, which can trigger greater or smaller
activation of system I. Mukherjee’s model, however,
does not explicitly model the choices in terms of
categorical decisions (i.e. accept vs. do not accept a
given hypothesis), which is a fundamental feature of
dual-processing models [27].

2) System I and system II operate on a continuum [41],
but in such a way that system I never sleeps [2]. A
final decision depends on the activation of both
systems I and II [2]. It has been estimated that about
40-50% of decisions are determined by habits (i.e. by
system I) [42]. This is also a variation of parallel-
competitive theory; it should be noted that latest
literature is moving away from this model [5,27].

3) The final decision appears to depend both on the
system I and system II in such a way that system I is
the first to suggest an answer and system II endorses
it [2]. In doing so, system II can exert the full control
over system I (such as when it relies on the EUT
modeling) or completely fail to oversee functioning
of system I (e.g., because of its ignorance or laziness)
[2]. Therefore, according to this model, decisions are
either made by system I (default) or system II (which
may or may not intervene). This is a default-
interventionalist model.

4) The variation of the model #3 is the so called “toggle
model”, which proposes that decision-maker
constantly uses cognitive processes that oscillate
between the two systems (toggle) [6,7,9]. This is a
variant of default-interventionalist model.

Note that y is continuous in our model, but it can be
made categorical [0,1] if the “toggle” theory is considered
to be the correct one. In this case, a logical switch can be
introduced in the decision tree to allow toggling between
the two systems. Most importantly, by linking Mukherjee’s
additive model with the threshold model, we provide the
architecture for reconciling parallel competitive theories
with default-interventionalist theories. We do it by making
explicit that decisions are categorical (via threshold) at
certain degree of cognitive effort (modeled via y) param-
eter [27]. That is, the key question is what processes deter-
mine acceptance or rejection of a particular (diagnostic)
hypothesis. Our model shows that this can occur if we
maintain parallel-competing architecture of Mukherjee’s
additive model but assume a switch, yes or no answer,
whether to accept or reject a given hypothesis (at the
threshold). It is evaluation of the (diagnostic) event with
respect to the threshold that serves as the final output of
our decision-making and reasoning processes. As our
model shows, this depends on assumption of parallel
working of both system I and system II, and the switch in
control of one system over another according to default-
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interventionalist hypothesis. Note that depending on acti-
vation of y parameter and assessment of benefits (gains)
and harms (losses) the control can be exerted by either
system: sometimes it will be the intuitive system that it
will exert the control and our action will take the form
“feeling of rightness” [43]; sometimes, it will be system II
that it will prevail and drive our decisions. Thus, we
succeed in uniting parallel competitive with default-
interventionalist models by linking Mukherjee’s additive
model with the threshold model for decision-making.

As discussed above, many factors can activate the
switch such as the presence or absence of empirical,
quantitative data, the context of decision making (e.g.
affect poor or rich), the decision maker’s expertise and
experience, etc. In addition, extensive psychological re-
search has demonstrated that people often use a simple
heuristic, which is based on the prominent numbers as
powers of 10 (e.g., 1,2,5,10,20,50,100,200 etc.) [44]. That
is, although system I does not perform the exact calcula-
tions, it still does assess “gist” of relative benefits and
harms, and likely does so according to “1/10 aspiration
level” [44] (rounded to the closest number) in such a
way that the estimates of benefits/harms ratio change by
1,2,5, 10, etc. orders of magnitude. Therefore, in this sec-
tion we consider several prototypical situations: 1) when
y = 0, 0.5, or 1; 2) when By>>Hy, By=Hy and By<<
Hy; and 3) when regret of omission (Bp)<< regret of
commission (Hj), B;=Hj, or Bi> > H;

First, note that y=0, when the numerator of the left frac-
tion in the Equation 6 (Additional file 1: Appendix) is
zero, i.e., when pB;; — (1 — p)Hy = 0, or solving for p, we
obtain p = ﬁ, which is exactly the value of the EUT

Hy
threshold for the probability at which the expected utilities
of the two options are the same. This will correspond to
model #3 above, in which system II exerts full control over
decision-making. Therefore, when y = 0, we have the clas-
sic EUT and therapeutic threshold model. In this case, re-
gret does not affect the EUT benefits and harms, and

_ Hp 1
Pe= i = LTy If By> > Hyy, p, approaches zero and a
11

decision-maker will recommend treatment to virtually
everyone. On the other hand, if By = Hyy, p; equals 0.5 and
she might recommend treatment if the disease is as likely
as not. Finally, if By<< Hy, p; approaches 1.0, and the
decision-maker is expected to recommend treatment only
if she is absolutely certain in diagnosis.

At the other extreme, if y = 1, we have the pure sys-
tem I model (corresponding to model #3 above, which
solely relies on system I processes). Note the value of
y=1, when the denominator of the second fraction in
Equation 6 (Additional file 1: Appendix) equals one, or
when the expression H; —B; =0, ie, when B;=H,
Under these conditions, it is fairly obvious that the
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system I assessments become irrelevant if the perceived
net benefit of the treatment is equal to the perceived net
harm. When y=1, regret avoidance becomes the key mo-
tivator, not EUT’s benefits and harms. Note that in sys-
tem I p is not related to y in terms of the valuation
(Equation 1). Under these circumstances only decision-
making under system I operate and the analytical pro-
cesses of system II are suppressed (Equation 1) as seen
in those decision-makers who tend to follow intuition
only, or are extremely affected by their past experiences
without considering new facts on the ground. That is,
differences in probability do not play any role in such
decisions, because a person who only uses system I
doesn’t consider probability as a factor.

Finally, if y = 0.5, the decision maker is motivated by
EUT and by regret avoidance (model #2 listed above). In
this case, the benefits (By;), harms (Hyy), regrets of omission
(By) and commission (Hj) are all active players. These three
cases are presented in Table 1 (see Additional file 2) which
shows threshold probabilities for y=0.5 and objective data
indicating a high benefit/harms ratio (By/Hy = 10). Also
shown is how the threshold probability depends on indi-
vidual risk perception. If Hy>>Hj, it magnifies effect of
Bi/H; (see Equation 3), which results in extreme behavior
in sense of increasing likelihood that such a person will ei-
ther always accept (as pi<0) or reject treatment (as pg>1).
For Hj< <Hy, the impact on the way system I processes
benefits and harms is not that pronounced and influences
the EUT threshold to much smaller extent.

Results

lllustrative medical examples

Clinical examples abound to illustrate applicability of
our model. To illustrate the salient points of our model,
we chose two prototypical examples where there is close
trade-offs between treatments’ benefits and harms.

Example #1: treatment of pulmonary embolism

Pulmonary embolism (PE) (blood clot in the lungs) is an
important clinical problem that can lead to significant
morbidity and death [45]. Even though many diagnostic
imaging tests exist to aid in the accurate diagnosis of PE,
the tests are often inconclusive, and physicians are left to
face the decision whether to treat patient for presumptive
PE, or attribute the patient’s clinical presentation (such as
shortness of breath and/or chest pain) to other possible
etiologies. There exists an effective treatment for a PE,
which consists of the administration of 2 anticoagulants
(blood thinners): heparin followed by oral anticoagulants
such as warfarin [46,47]. Heparin (unfractionated or low-
molecular weight heparins) are highly effective treatments
associated with relative risk reduction of death from PE by
70-90% in comparison to no treatment [46,47]. This con-
verts into the absolute death reduction as: net benefits,
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B;=17.5% to 22.5% (calculated as 25% morality without
heparin minus 7.5% to 2.5% with heparin) [17,18,46,47].
However, these drugs are also associated with a significant
risk of life-threatening bleeding; net harms range from
Hp;=0.037% (a typical scenario) to 5% (a worst-case sce-
nario) depending on the patients’ other comorbid condi-
tions [17,18,47,48]. Thus, net benefits/net harms range
from 60.8 (22.5/0.037) (best case) to 3.5 (17.5/5)(worst
case scenario). If we apply a classic EUT threshold
[13,14,36], which relies solely on system II processes, we
observe that the probability of pulmonary embolism above
which the physician should administer anticoagulants
ranges from 1.6% [=1/(1 4 60.8)] (best case) to 22.2%
[1/(1 4 3.5)](worst case scenario). However, ample clin-
ical experience has demonstrated that few clinicians would
consider prescribing anticoagulants at such low probability
of PE [18]. In fact, most experts in the field recommend
giving anticoagulants when probability of PE exceeds 95%
[49-51]. We have previously suggested that this is because
regret associated with administering unnecessary and po-
tentially harmful treatments under these circumstances
likely outweighs regret associated with failing to adminis-
ter potentially beneficial anticoagulants [17-19]. We now
show how this argument can be made in the context of
dual processing theory. Indeed, some physicians may feel
that the risk of bleeding may be much higher, particularly
in case of a patient who recently experienced major
hemorrhage. The physician may not have data readily
available to adjust her EUT, system II-based calculations.
Rather, she employs the system I-based reasoning, globally
assessing the benefits and harms of treatments under her
disposal. Importantly, these are personal, intuitive, affect-
based, subjective judgments of the values of outcomes that
are influenced by memory limitations and recent experi-
ences and that may not be objectively based on the exter-
nal evidence [2,30-33]. In addition, it is well documented
that the physicians’ recent experience leads to a type of
bias, known as primacy effect, that is governed by system I
[2,33]. If the last patient with PE whom the physician took
care of had severe bleeding, system I may be primed in
such a way that it will likely conclude that harms outweigh
benefits. In our case of PE, if her reasoning is dominated
by system I (operating, say, at y level of 0.77 according to
model #2 listed above, see Section “The behavior of DSM-
M model”) in a such way that the physician concludes that
if harms is larger than benefits by 10%, then the threshold
probability above which she will treat her patient sus-
pected of PE exceeds 95% [as easily demonstrated after
plugging in the benefits/harms values in Equation 3)
pe(dual) = .222 — (.77)/(2*.23)*(—.10/.225) = 0.966 =

96.6% for k = 1]. Note that this calculation describes cir-
cumstances under which the physician would adhere to
the contemporary practice guidelines i.e. to prescribe
anticoagulants when PE exceeds 95% [49-51]. It should be
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further noted that if y value is only slightly higher (>0.78),
the physician will require the absolute certainty to act (i.e.
the threshold >1).

DSM offers an account of the opposite behavior as well
i.e. the threshold based on global evaluation using both
system I and system II can also be lower than the EUT
threshold (if B;>H; additive, model #1, Equation 3). For
example, the physician may trivialize the risks of treatment
and believe that the benefits are much higher than the
treatment harms. As a result, the threshold above which
she commits to treatment drops below EUT threshold (as
predicted by Equation 3). Figure 3 shows how the decision
threshold (p,) is affected by the relative involvement of
systems I and II in dual process model of medical
decision-making in the “best” ( By/Hy = 60.8 ) and
“worst case” scenario (By/Hy = 3.5) for treatment of PE
and when system I valuation of benefits is greater than
harms or when harms are perceived to outweigh benefits.
It can be seen that when objective data indicate that bene-
fits considerably outweigh harms (By; >>> Hy;) (as when
By /Hy = 60.8), then as long as system I values benefits as
being greater than harms, the threshold dramatically drops
to zero indicating that the extent of system I involvement
(i.e. y value) in decision-making is of little consequence.
However, if system I clashes with objective data, then the
probability of PE above which the decision-maker is pre-
pared to treat, dramatically increases (Figure 3a). Similarly,
in all other circumstances (when By >Hjy By ~Hy, By<
Hy), the threshold probability is significantly affected by
involvement of system I (Figures 3b—3d).

Example #2: treatment of acute leukemia

Acute myeloid leukemia (AML) is a life-threatening dis-
ease, which, depending on the aggressiveness of disease
can be cured in the substantial minority of patients. To
achieve a cure, patients are typically given induction
chemotherapy to bring the disease into remission, after
which another form of intensive therapy - so called, con-
solidation treatment - is given. To achieve a cure in
patients with more aggressive course of disease such as
those classified as intermediate- and poor-risk AML
based on cytogenetic features of disease, allogeneic stem
cell transplant (alloSCT) is recommended [52]. However,
the cure is not without price- many patients given
alloSCT as a consolidation therapy die due to treatment.
A decision dilemma faced by a physician is whether to
recommend alloSCT, or alternative treatment, such as
chemotherapy or autologous SCT, which has lower
cure rate but less treatment-related mortality. In
intermediate-risk AML, for example, credible evidence
shows that, compared with chemotherapy allogeneic
alloSCT result in better leukemia-free survival (LFS) by
at least 12% at 4 years (LEFS with alloSCT =53% vs 41%
with chemotherapy/auto SCT) [53]. Treatment-related
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mortality is much higher with alloSCT by 16%, on
average (19% with alloSCT vs. 3% with chemotherapy/
autoSCT) [53]. This means that based on objective
data, and using rational EUT model, we should recom-
mend alloSCT for any probability of AML relapse
>57.1% (threshold = 1/(1 4 0.12/0.16) = 0.571). There-
fore, treatment benefits and harms are, on average, very
close. Because of this, the driving force to recommend
alloSCT is the physician’s estimates of the patient’s toler-
ability of alloSCT: if she assess that the patient will not
be able to tolerate alloSCT, the physician will not recom-
mend transplant. Conversely, if she thinks that the pa-
tient will be able to tolerate allo SCT, the physician will
recommend it. Although there are objective criteria to
evaluate a patient’s eligibility for transplant, the assess-
ment to the large extent depends on physicians’ judg-
ment and experience [54]. That is, the assessment of
patient’s eligibility for transplant depends both on the

objective data on benefits and harms (system II ingredi-
ents) and intuitive, gist type of judgment (characteristics
of system I). As discussed above, system I does not con-
duct the precise calculations. Rather, it relies on “gist” or
on simple heuristics such as those that are based on
powers of 10 (e.g., 1,2,5,10,20, etc.) [42]. The physician,
therefore, adjusts the threshold above or below based on
her intuitive calculations. For instance, it is often the
case that the physician whose patient recently died dur-
ing the transplant is more reluctant to recommend the
procedure even to those patients who, otherwise, seems
fit for it. In doing so, the physician in fact modifies her/
his dual system threshold upwards. In our example, let’s
assume that the physician judges that the harms of
alloSCT for a given patient is twice as large as reported
in the studies where patients were carefully selected for
transplant [52]. That, in our case, would mean that mor-
tality due to alloSCT is 32% (instead of 16%). We can
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now plug these numbers in Equation 3) (By=0.12, Hy =
0.16, B;=0.12, H; =0.32).

Note that the physician can make this judgment at vari-
ous level of activation of system I. If the decision is pre-
dominantly driven by system I judgment then our
physician’s threshold according to Equation 3) is greater
than 100% for all circumstances in which y value exceeds
55%. That means that under these circumstances of sys-
tem I activation, the physician will never recommend
transplant. The opposite can occur for those physicians
whose experience is not affected by poor patients’ out-
comes. Under such circumstances, the physician may
judge the patient to be in such a good condition that she
may re-adjust the reported treatment-related transplant
risk to be as half of those observed risks in the published
clinical studies (i.e. 8%). The new numbers required to de-
termine the threshold according to Equation 3 are: By=
0.12, Hy =0.16, B;=0.12, H;=0.08. If the physician relies
excessively on system I, as often seen in busy clinics where
decisions are routinely made on “automatic pilot”, the dual
threshold drops to zero (for all y >89%). That means, that
the physician will recommend alloSCT to all her/his
patients under these circumstances.

As discussed above, we provide the precise calculations
only to illustrate the logic of decision-making. The process
should be understood more along semi-quantitative or
qualitative description of clinical decision-making. Although
currently the Equation 3) allows entry of almost any value
for benefit and harms, it is probably the case that benefit
and harms as perceived by system I are based on “1/10
aspirational level” [44], so that only values of 1,2,5,10, 20 etc.
should be allowed. This is, however, empirical question that
should be answered in further experimental testing; there-
fore, at this time, we decided not to provide the exact
boundaries of the values for benefit and harms that can be
entered in Equation 3 (see Discussion). Note also that these
calculations are decision-maker specific, and although we il-
lustrate them from the perspective of the physician, the
same approach applies to the patient, who ultimately has to
agree —based on her own dual cognitive processing- on the
suggested course of treatment actions.

Discussion

Models of medical decision-making belong to two gen-
eral classes-descriptive and prescriptive. The former,
which the DSM-M exemplifies, attempt to explain why
decision makers take or might take certain actions when
presented with challenging decision problems abundant
in contemporary medicine. The latter, exemplified by the
normative therapeutic threshold models [13,14] pre-
scribe the choice options that a rational decision maker
should take. We have defined the first formal dual-
process theory of medical decision-making by taking
into consideration the deliberative and the experiential
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aspects that encompass many of the critical decisions
physicians face in practice. Mathematically, our model
represents an extension of Mukharjee’s additive Dual
System Model [11] to the clinical situation where a
physician faces frequent dilemmas: whether to treat the
patient who may or may not have the disease, or choose
one treatment over another for prevention of disease
that is yet to occur. Our model is unique in that incor-
porates an exemplar of strong emotion, decision regret,
as one of the important components of system I func-
tioning. We focused on regret because previous research
has shown that people often violate EUT prescribed
choice options in an effort to minimize anticipated re-
gret [1,2,20]. Although we use the more common psy-
chological term “regret,” the concept is analogous to
Feinstein’s term “chagrin” [55]. In fact, explicit consider-
ation of post-choice regret in decision making has been
considered an essential element in any serious theory of
choice and certainly dominates many clinical decisions
[1,2,20]. We also reformulated the original model using
the threshold concept- a fundamental approach in med-
ical decision-making [13,14,36]. The threshold concept
represents a linchpin between evidence (which presents
on the continuum of credibility) and decision-making,
which is a categorical exercise (as choice options are ei-
ther selected or not) [13,14,36]. Using an example such
as pulmonary embolism, we have shown how the
extended model can explain deviations from outcomes
predicted by EUT, and account for the variation in man-
agement of pulmonary embolism [45]. In general, it is
possible that the huge practice variation well documen-
ted in contemporary medicine [56-61], can be, in part,
due to individual differences in subjective judgments of
disease prevalence and “thresholds” at which physicians
act. [17,18,62]. This may be because quantitative inter-
pretations of qualitative descriptors such as rarely, un-
likely, possible, or likely [63] differ markedly among
individuals and hence “gist” representations of a given
clinical situation can vary widely among different physi-
cians [30]. We are, of course, aware that many other fac-
tors contribute to variation in patient care including the
structure of local care organizations, the availability of
medical technologies, financial incentives etc [60]. Our
intent in this article is to highlight, yet another import-
ant factor- individual differences in risk assessment as
shaped by different mechanisms operating within a dual
process model of human cognitive functioning [5].
There are many theories of decision-making [64].
Most assume a single system of human reasoning [11].
Nevertheless, all major theories of choice agree that ra-
tional decision-making requires integrations of benefits
(gains) and harms (losses). EUT vs. non-EUT theories of
decision-making differ in how benefits and harms should
be integrated in a given decision task. To date, dual
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processing theory provides the most compelling explan-
ation how both intuitive and rational cognitive processes
integrate information on benefits and harms and provide
not only descriptive assessments of decision-making, but
possibly may lead to insights that improve the way deci-
sions are made. Figures 3 & 4 illustrate how dual decision
threshold (shown on the Y axis) for deciding between two
possible courses of action can be influenced by the degree
of system I involvement. As discussed above and mathem-
atically captured in Equation 3, the clinical action such as
treat versus no treat is best explained by relating benefit
and harms of proposed therapeutic interventions to the
threshold probability: if the estimated probability of dis-
ease is greater than the threshold probability, then the
decision-maker is inclined to give treatment; if the prob-
ability of disease is below the threshold, then the treat-
ment is withheld. Figure 4 shows a dramatic drop in the
decision threshold as a function of the ratio between bene-
fit and harms, which is derived from empirically obtained
evidence. When these data are solely relied on by system
11, the rational course of action consists of administering
treatment as long as the probability of disease is above the
threshold regardless how low the threshold probability
drops [13,14,36] (which in case of the treatment of a pa-
tient with pulmonary embolism can be as low as 1.6%!).
Paradoxically, if we were to adopt this — presumably most
rational-approach to the practice of medicine, we would
likely see a further explosion of inappropriate and wasteful
use of health care resources [18,21]. This is because in
today’s practice, benefits of approved treatments vastly
outweigh their harms, and as a result threshold probability
values is predictably very low for the majority of health
care interventions employed in the contemporary clinical
practice [18]. System I, however, does offer a means of
mitigation. The correction of the thresholds - our action
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whether we are comfortable treating at higher or lower
probability than the thresholds obtained via usage of sys-
tem II — depends on the extent of involvement of system I
in decision-making. If system I perceives that harms are
higher than system I benefits, the threshold probability is
always higher than classic EUT threshold. However, if
B;>Hj, the threshold probability is always lower than the
EUT threshold (Figure 4). This is particularly evident in
clinical practice when physicians attempt to tailor evi-
dence based on the results of the research study, which
generates the “group averages”, to individual patients who
often differ in important ways from patients enrolled in
the research studies (e.g., these patients may be older, have
comorbid conditions, might be using multiple medica-
tions, etc.) [65]. It is under these circumstances that sys-
tem [ affects our judgments and can give rise to different
decisions from those based solely on system II. Note, how-
ever, that although system I does assess benefits and
harms, it likely does so via”gist” representation and not ne-
cessarily by employing the exact numerical values as sys-
tem II does [30]. System I is also affected by emotions, as
illustrated in the case where experts panels of the govern-
ments of many countries recommended HIN1 influenza
vaccination, but where inoculation was refused by the ma-
jority of patients [66,67].

It is interesting to examine circumstances under which
we always treat (p; < 0) or never treats (p, > 1). Equation 1
(Additional file 2: Table S1) shows that when objective
evidence indicates that benefits outweigh harms, and
when this is further augmented by the decision-maker’s
risk attitude in such a way that it magnifies system I's
valuation of benefits and harms, then we can expect to
continue to witness further overtreatment in clinical
practice (as p; drops to zero) [65]. However, when the
decision-maker perceives the benefits smaller than
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harms, then the threshold increases; consequently, the
decision-maker will require higher diagnostic certainty
before acting (Figure 3 & Figure 4). This may occur dur-
ing extrapolation of research results from the group
averages to individual patients, when empirical evidence
about By and Hj; is considered to be unreliable, when
the decision-maker is risk averse, or when his or her
cognitive processes are biased through the distorting
effects of recent experience, memory limitations or other
forms of biases well described in the literature [2,31,33].
This discussion illustrates how the “rationality of action”
may require a re-definition, one encompassing both the
formal principles of probability theory and human intui-
tions about good decisions [5,68]. Our goal here is not
to demonstrate that one approach is conclusively super-
ior to the other- we are merely outlining the differences
in the current physicians’ behavior from the perspective
of dual processing theory.

Despite the growing recognition of the importance of
dual processing for decision-making [2,5], a few formal
models have been developed to try to capture the es-
sence of the way we make decisions. Because different
authors focus on different aspects of a multitude of
decision-making processes, Evans has recently pointed
out that there are many dual processing theories [27]
which fall into two main groups [27,40] parallel competi-
tive theories and default-interventionalist theories. While
the exact accounts of cognitive processes between these
two groups of theories differ [27], as discussed above
(Section The behavior of DSM-M Model), we, for the
first, time provide a platform, albeit the theoretical one,
for reconciling parallel competitive theories with default-
interventionalist theories.

Nevertheless, our main goal is to define a theoretical
model for medical decision-making; such a model may
enable creation of new theoretical frameworks for future
empirical research. Future research, obviously, involves
extension of the model described herein to more com-
plex clinical situations beyond relatively simple two-
alternative situation, even if the latter is frequently
encountered in practice. Particularly interesting will be
the extension of our dual processing model to include
the use of diagnostic tests as the number of new diag-
nostic technologies continues to explode. Finally, and
most importantly, the model presented here needs em-
pirical verification. This limitation is not unique to our
model, however, and this criticism can be leveled against
most current medical decision-making models, which
are rarely, if ever, subjected to empirical verification.

Our model heavily relies on Mukherjee’s model [11],
and is accurate to the extent his additive dual processing
model is correct (Figure 1, Equations 1 & 2). Also, note
that we have extended Mukherjee’s DSM model by omit-
ting his scaling constant k and using general utility
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expressions, rather than a single parameter monotonic
power function. As discussed above, many factors can ac-
tivate the switch of system II. In fact, Kahneman warns [2]
that “because you have little direct knowledge what goes
on in your mind, you will never know that you might have
made a different judgment or reached a different decision
under very slightly different circumstances”. This implies
that the multiple factors affecting the gamma parameter
cannot be directly modeled. A possible solution —and area
for future research building on the psychological “fuzzy
trace theory” [30]-would be to employ a fuzzy logic model
to assess the values of y (and threshold) as a function of
multiple fuzzy inputs [69].

The complexity described here notwithstanding, we
believe that the empirical verification of our current dual
processing model is feasible. Even without direct model-
ing of all factors affecting y parameter, our model gener-
ates empirically falsifiable qualitative predictions as it
clearly identifies circumstances under which the decision
threshold is increased or decreased as a function of acti-
vation of system I (y parameter). Using simulation to
imitate the various real-life decision-making scenarios
[70] offers most logical avenue toward the first empirical
testing of our model.

Our model also holds promise in medical education.
As highlighted in Introduction, modern knowledge of
cognition has taught us that most people, including phy-
sicians process information using both system I (fast, in-
tuitive) and system II (slow, deliberative) reasoning at
different times but few investigators have examined how
to teach physicians to integrate both modes of reasoning
in arriving at therapeutic strategies. On the diagnostic
side, many investigators [6,71] have examined clinical
reasoning and proposed how experienced physicians
move between system I and system II, although most
early papers used different terminology. The integration
of system I and system II in therapeutic decision making
in medicine has been less well examined. A number of
investigators have proposed approaches to using and
teaching system II reasoning, including the use of deci-
sion models [71]. Although this is taught in some
schools it has not yet taken medical education by storm
[71]. In the field of economic analysis Mukerjee has
proposed a theoretical means of combining system I and
system II reasoning. In this paper, we build on Mukurjee’s
work and show how the integration of system I and sys-
tem II therapeutic reasoning can form a basis for teaching
students and experienced physicians to recognize and
integrate system I and system II reasoning. Our model
uniquely captures most salient features of (medical)
decision-making, which can be effectively employed for di-
dactic purposes. It is believed that by recognizing separate
roles of system II and the influence of system I mechan-
isms on the way we make decisions, we can be in a better
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position to harness both types of processes toward better
practice of making clinical decisions [2,9].

Conclusion

We hope that our model will stimulate new lines of em-
pirical and theoretical work in medical decision-making.
In summary, we have described the first dual processing
model of medical decision-making, which has potential
to enrich the current medical decision-making field
dominated by expected utility theory.
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