
Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35
http://www.biomedcentral.com/1472-6947/13/1/35

TECHNICAL ADVANCE Open Access

The cloud paradigm applied to e-Health
Jordi Vilaplana1, Francesc Solsona1, Francesc Abella2, Rosa Filgueira3 and Josep Rius4*

Abstract

Background: Cloud computing is a new paradigm that is changing how enterprises, institutions and people
understand, perceive and use current software systems. With this paradigm, the organizations have no need to
maintain their own servers, nor host their own software. Instead, everything is moved to the cloud and provided on
demand, saving energy, physical space and technical staff. Cloud-based system architectures provide many
advantages in terms of scalability, maintainability and massive data processing.

Methods: We present the design of an e-health cloud system, modelled by an M/M/m queue with QoS capabilities,
i.e. maximum waiting time of requests.

Results: Detailed results for the model formed by a Jackson network of two M/M/m queues from the queueing
theory perspective are presented. These results show a significant performance improvement when the number of
servers increases.

Conclusions: Platform scalability becomes a critical issue since we aim to provide the system with high Quality of
Service (QoS). In this paper we define an architecture capable of adapting itself to different diseases and growing
numbers of patients. This platform could be applied to the medical field to greatly enhance the results of those
therapies that have an important psychological component, such as addictions and chronic diseases.

Keywords: Cloud systems, e-Health, Queue systems, Quality of service

Background
A recent study [1] showed as personalized follow-up by
using of telematic tracking applications by means of SMS
messaging improved the results in the quitting smokers
patients. Related experiments also proved that the same
method is useful for application related with the treatment
of hypertensive patients [2] and in patients with chronic
diseases in general [3]. By using telematic applications,
the time dedicated to personalized clinical attention to
patients increase, and clinicians more effectively sched-
uled and managed that time. Also avoids unnecessary
travel by patients, while allowing them to feel closely
followed by the clinician. This is just one example of
the benefits that can bring telematic applications, whose
implementation in health centres is increasing.
This article presents the design of a cloud platform

with QoS guarantees (based on waiting time for services)
applied to e-Health. It is thought to include a wide range

*Correspondence: jrius@icg.es
4ICG Software, Pol. Industrial Torrefarrera C. Mestral, s/n 25123 Torrefarrera,
Lleida, Spain
Full list of author information is available at the end of the article

of telematic as well as usual programs (administration,
specialised, general purpose, etc.). Cloud computing can
offer many opportunities to improve health care services
from the viewpoint of management, technology, security
and legality [4]. By moving the infrastructure to the cloud,
valuable data extracted from the different databases of
treatment, patients, diseases, and so on will be accessible
to doctors to perform analytical studies and see statisti-
cal results. By hiding personal patient details, data could
be shared between doctors and even hospitals, and could
also be cross-reference information from different dis-
eases and treatments. In [5], the authors examine how
the biomedical informatics community, especially consor-
tia that share data and applications, can take advantage of
cloud computing. Cloud computing systems offer the illu-
sion of infinite computing resources available on demand,
allowing an expansion of the resources when needed.
Hardware and software services are more efficiently han-
dled than in other High Performance Computing (HPC)
infrastructure as they can be added and released dynam-
ically [6]. However, problems arise when scaling the sys-
tem, this is, when trying to deploy a platform to support

© 2013 Vilaplana et al.; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 2 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

the computing needs of many hospitals, with different
clinical departments, with their corresponding clinicians
and patients. We can say that this health approach can be
extrapolated to many other areas, administration, educa-
tion, social care, etc.
Cloud computing has gained worldwide attention from

many researchers, but only a small portion of them have
addressed the QoS performance problem [7]. QoS per-
formance includes indicators such as response time, task
blocking probability, probability of immediate service, and
mean number of tasks in the system [8], all of which may
be determined using the tools of queuing theory [9].
We use Cloud computing and queuing system theory

to address the problem of cloud scaling. By modelling a
queue system we aim to provide scalability to the cloud
infrastructure running on a given virtualized platform.
Thus the cloud system can automatically scale out in an
optimal way in order to guarantee the QoS (e.g. wait-
ing time), planning the proper deployment and removal
of virtual machines according to the system load [10].
Platforms like Xen [11] or VMWare [12] offer virtual com-
puting environments that allow for flexible cloud system
management and configuration. Despite this, they do not
offer tools to manage the computational resources (mainly
virtual servers) in a dynamic and flexible way given a
defined Quality of Service (QoS). In order to achieve that,
OpenStack [13] can be used, an open source software for
managing virtual machines.
Quite different, our work does not focus on the inves-

tigation of specific queuing theory challenges but on the
use of existing models for designing and testing perfor-
mance of cloud systems in e-Health. We are interested
in modelling QoS performance by scaling e-Health cloud
platforms, leaving aside other issues such as reliability,
security or availability.

Preliminary concepts and related work
A cloud system is a network of computer servers that are
offered under demand as a service, and they are designed
to be scalable and flexible. Cloud systems can be served
in three different ways (see Figure 1). The first layer is
Infrastructure as a Service (IaaS), which means offering
hardware, storage and physical devices over the Inter-
net; The second layer is Software as a Service (SaaS),
which means offering software and hosted applications
over the Internet; And as a combination of both, Platform
as a Service (PaaS), which means offering the capability
to deploy applications created using programming lan-
guages, libraries, services, and tools supported by the
provider. The consumer does not manage or control the
underlying cloud infrastructure, but has control over the
deployed applications [7,14]. In our case, we are interested
in modelling a private cloud system, maintained by one
organization/institution, of the SaaS kind, which mainly

provides software services to its members or end users,
clinicians and patients.
In [15], the authors obtained the response time distri-

bution of a cloud system modelled by means of queu-
ing theory on a classical M/M/m open network with m
servers, assuming an exponential density function for the
inter-arrival and service times (M). By using the response
time distribution, they determined the level of service
and the relationship between the maximum number of
tasks and the minimum number of resources (virtual
machines). The response time takes into account both
waiting time in the queue and service time. In [16],
the authors obtained the response time distribution for
a cloud with a M/M/m/m+r system model. Having in
addition a finite number of buffers (i.e. connections)
of size m+r. M/M/m/m+r models can be more suit-
able when we have a known finite buffer for arrivals.
M/M/m models are useful when these maximum con-
nections are unknown or not relevant, and the result-
ing analysis is not as complex as in the M/M/m/m+r
models.
The study of the case where the time between arrivals

and/or service time does not follow an exponential dis-
tribution is much more complex, as for example G/M/m,
M/G/m and G/G/m models. Many theoretical studies
have been based on extensive research in performance
evaluation, including those that analysed the M/G/m
model (e.g. [17]). The complexity in these cases comes
from the impossibility of obtaining a closed formula to
represent the probability distributions of the response or
waiting time of customers in the queue, and therefore
requires finding approximate models.
As stated in [18], the majority of current cloud comput-

ing infrastructure as of 2009 consists of services that are
offered up and delivered through a service centre such as
a data centre that can be accessed from a web browser
anywhere in the world. Our proposal also relies on that.
In this paper, we study a queuing performance model

consisting of a cloud architecture (or simply called a
cloud) and a service centre such as a data centre. The
cloud, is a single point of access for the computing needs
of the customers being serviced [18] through a Web
browser supported by a Web server. In [15] the service
centre was modelled as a collection of service resources
used by a service provider to host service applications for
customers. In our case, the service centre is a database
server. The service provider is required to execute ser-
vice requests from a customer within negotiated quality of
service (QoS) requirements for a given price determined
by the service level agreement (SLA). The SLA is a con-
tract negotiated and agreed between a customer and a
service provider. In our case the customers will be the end
users (clinicians and patients) and the service provider the
owner organization of the cloud.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 3 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

Figure 1 Cloud services. Classification of cloud systems according to the services they offer. SaaS allows users to run online applications. The
vendors own the applications and the users pay a fixed subscription fees. PaaS allows users to create their own cloud applications, providing all the
execution and compilation of software as well as operating systems. IaaS allows users to run any applications they want to on cloud hardware of
their choice.

However, traditional queuing results are not directly
applicable to performance analysis of cloud computing
when one or more of the three following issues holds
[7], the number of servers is huge, this is cloud systems
made up by hundreds or thousands of nodes [19]; the
distribution of service times is unknown, and does not
follow a “well-behaved” probability distributions such as
exponential distribution; finally, the traffic intensity can
vary in an extremely wide range. Cloud centres must pro-
vide expected QoS at widely varying loads due to its
dynamic nature [15,20], so load peaks are badly modelled
by queuing systems.

Cloud architecture
The architecture of our cloud platform consists of two
main parts: Front-end and Back-end (see Figure 2).

Front-end
The Front-end is the gateway to the cloud and consists
of the software components and the interfaces needed
to connect to the platform by using remote client appli-
cations. These applications usually use standard Web
protocols to access the system and an authentication pro-
tocol which allows access to authorised users (clinicians
and patients). All requests are processed by the sched-
uler, which sends the selected tasks to the queue of the
Back-end. For simplicity, a First Come First Serve (FCFS)
scheduling policy was assumed.
As we are proposing a generic system, medical work-

flows will not be implemented as part of our model.
Instead, these medical workflows will be implemented

via software. All arriving tasks in our model will consist
of web requests, avoiding deadlock situations that could
otherwise arise when using a FCFS queue policy.

Back-end
The Back-end functions include management of the job
queue, the servers and their virtual machines and the stor-
age servers with their database system. Database inconsis-
tencies are avoided by considering only one storage (i.e.
database) server. All requests from the Front-end areman-
aged by a scheduler to be allocated in a queue. The server
system consists of multiple virtual machines managed by
OpenStack and connected to a database server.
The Back-end is made up of three different kinds of

servers:

Primary servers: virtual machines running the multi-
threading application. The parallel degree of the applica-
tions will depend on the threads (tasks making up the
application when executed) it can be decomposed. These
servers are responsible for performing most of the com-
putation.

Specific Servers: virtual machines whose main task is
to perform specific calculations and handle the Front-
end interface. Moreover, they manage the communication
with the database and with other servers (even the pri-
mary servers).

Control Server: virtual machine in charge of monitoring
the overall system status. This server is responsible for
creating and removing virtual machines dynamically.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 4 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

Figure 2 Cloud systemmodelling. Design of the proposed cloud
architecture. User requests from multiple devices go through a HTTP
interface to the cloud system. A First-Come-First-Serve scheduler
distributes all these requests to the Front-end nodes, which forward
these to the Back-end nodes. The Back-end nodes process the
requests and compute the expected user result, accessing the system
database if needed. In the Back-end, there are also control nodes that
monitor the state of the system, and are able to create or destroy
virtual machines according to that state.

OpenStack
The cloud architecture presented in previous section can
be implemented with OpenStack [13]. OpenStack is an
open source software that provides a massively scalable
and pluggable framework for building private and public
clouds. Notice that our cloud was characterised as private
and scalable, so it ideal for our purpose. It goes beyond a
classic hypervisor (i.e. VirtualBox [21], Xen [11], VMware
[12]), and allows the setup of virtual machines dynami-
cally, as computational resources are needed. This guar-
antees high QoS in periodic traffic spikes, when the arrival
rate of the requests to be served increases. OpenStack can
be set up to create new instances when current servers
are overwhelmed and to shut them down when traffic
decreases. This feature ensures you that the number of
instances in the cloud system scales up when your system

grows, and is particularly well suited for applications that
experience deep variability in usage.
OpenStack offers a set of APIs (Application Program-

ming Interface) that allow to interact dynamically with
the installed OpenStack platform. Using these APIs, it
is possible to authenticate and interact with the system
from the command line or programmatically. For exam-
ple, in Python we have available the python-nova client
API [22,23] avaialble, where the nova boot and nova delete
commands allow us respectively to boot a new server and
immediately shut down and delete a server dynamically.

Methods
System analysis and design
The main aim of this work is the design of the Back-end,
composed of the primary, specific and control servers.
The design has to take into account the analysis of require-
ments, which in our case exclusively focus on the charac-
terisation of arrival frequency of the users and the QoS in
serving them with our cloud platform.
The e-Health application we are targeting must be scal-

able in order to provide a service to an unlimited number
of users which will be mainly healthcare staff and patients
from various hospitals. Taking into account the cloud
architecture (Section Back-end), the primary servers of
the Back-end are the ones in charge of serving the plat-
form users’ requests.
Furthermore, several specific servers will be in charge

of the communications with the database containing the
healthcare information.
Finally, the control server will be in charge of manag-

ing the creation and disposal of the specific and primary
servers. In order to control the system we propose the
creation of a queuing system that models system perfor-
mance. This model is described in SectionModelling.
Figure 2 shows the design of the cloud system, includ-

ing how service requests are planned by the “Scheduler”
via a FCFS queue. Then, the requests are forwarded to the
Front-end in charge of submitting tasks to the Back-end.
Finally, the communication among the Back-end compo-
nents is also shown.

Modelling
In this section, we will focus only on the Back-end, which
is managed by the control server. Its basic function is to
create and remove specific and primary servers. These
decisions are taken according to the waiting time of the
user tasks.
As can be seen in Figure 3, the system will contain two

queues of the same type (M/M/m). This means that both
the time between user arrivals to the system and the ser-
vice time of the system follow an exponential distribution
with means λ and μ respectively, with m servers with
an FCFS scheduling policy. The first queue models the



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 5 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

Figure 3Model. Graphical representation of the two system queues.
Both of them are of the same type (M/M/m). The firstM/M/m queue
models the access to the primary servers, and is always accessed
when new requests enter the system. The secondM/M/m queue
models the access to the database cluster, which is accessed based
on a probability depending on the Back-end nodes.

primary servers while the second one models the specific
servers that interact with the database.
Abstracting away the details of the application prob-

lem, we propose a model of a queueing system composed
by two M/M/m queues connected serially, as can be
seen in Figure 4. The user tasks enter the system though
the first queue; then they move on to the second queue
(this represents the database system) with probability d.
Conversely, a user has (1 − d) probability of leaving the
system without passing through the second queue. In
this way, we are modelling a system in which each user
requires a computing operation and a database access with
probability d.
According to Burke’s theorem [24], the output of a stable

M/M/m queue with an input parameter λ and a service
parameterμ for each one of them servers is a Poisson pro-
cess with the same input parameter λ. This means that the
serial connection of twoM/M/m systems (without cycles)
is independent between them and these systems keep the
same density distributions, both for arrival and service.
Our two queues can be analysed independently, and

they form an open Jackson network. The interconnection
and behaviour between the queues is ruled by Burke’s [25]
and Jackson’s theorems. Burke states that we may connect
many multiple-server nodes together in a feedforward
network and still preserve the node-by-node decompo-
sition. Jackson [26,27] states that to calculate the total

Figure 4 Two serially connectedM/M/m queues. Queueing
system composed by twoM/M/m queues connected serially. The
first one models the access to the primary servers, and the second
one models the access to the database. λ is the request arrival rate.
There is a probability d of accessing the second queue, and a
probability (1 − d) of exiting the queueing system without going
through the second queue.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 6 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

average arrival rate we must sum the arrivals from outside
the system plus arrivals from all internal nodes.

M/M/m
In this section we analyze the M/M/m queuing system,
with m servers and two density functions, that represents
the average arrival (λ) and service rate per server (μ), as
can be seen in Figure 5.
Figure 6 shows the state transition diagram of the system

in equilibrium, as well as the equations that define it.
Solving the system of equations we can obtain the value

for pk , i.e., the probability of the system having exactly k
users.

pk =
⎧⎨
⎩
p0 (mp)k

k! k ≤ m

p0m
mρk

m! k ≥ m
(1)

where the utilisation factor (ρ) is:

ρ = λ

mμ
< 1 (2)

Taking into account that:
∞∑
k=0

pk = 1, (3)

we obtain the probability of having no users in the system
(p0):

p0 =
[∑m−1

k=0
(mρ)k

k!
+ (mρ)m

m! (1 − ρ)

]−1

(4)

The average number of users in the waiting queue (NW )
is:

NW =
∞∑
k=0

kpk+m

=
∞∑
k=0

kp0
mmρk+m

m!
= p0(mρ)m

m!

∞∑
k=0

kρk

= p0(mρ)m

m!
ρ

(1 − ρ)2

(5)

The average waiting time in the queue W (this is the
QoS parameter we have chosen for this work) is defined
as:

W = NW
λ

(6)

Quality of service
As was said before, the selected Quality of Service (QoS)
criterion is the waiting time in the queue. This waiting
time depends on the utilization factor ρ. In an M/M/m
system queue, ρ = λ

mμ
.

According to the guidelines stated by Shneiderman
[28-30], a system’s response time should be appropriate
to the task that is being performed. For typing, cur-
sor motion and mouse selection, they define an inter-
val of between 50 and 150 milliseconds, and a value of
750 to 1000 milliseconds for simple and frequent tasks.
The customers of our system will be performing sim-
ple and frequent tasks due to the interaction with a
web-based application. For these reasons, we assume a
Wmin value of 150ms and a Wmax value of 750ms. These
values could be modified to analyse other kinds of sys-
tem where mean acceptable response times could be
different.
As a consequence, we can establish that if the aver-

age waiting time of our system is longer than Wmax, the
system will have to create new virtual machines, this is,
to increase the number of primary servers or, depending
on the case, specific servers until W returns back under
the Wmax threshold. Conversely, if W drops below the
Wmin value, the system can release resources, which in
our case corresponds to removing primary (or specific)
servers, until W is again above the lower limit Wmin. This
mechanism is implemented in the algorithm presented in
Quality of service section which checks every period of
time T the value of W and determines the need for cre-
ating or removing primary or specific servers until W lies
within the range Wmin ≤ W ≤ Wmax range. Currently, T
is a predetermined value, set by the system administrator,
but it would be interesting to calculate T in function of ρ.

Figure 5M/M/m queue scheme. Representation of anM/M/m queuing system withm servers and two density functions. The average arrival
rate of the requests is represented by λ. The total number of servers goes from one tom, each one having a service rate represented by μ.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 7 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

Figure 6 Transition state diagram and equilibrium equations ofM/M/m queue. State transition diagram of theM/M/m queue and the
equilibrium equations that define it. The state space records the number of customers in the queueing system. The values λ and μ represent the
arrival and service rates of customers.

In the same way, it would also be interesting to incorpo-
rate some kind of control mechanism in the algorithm in
order to decide which type of virtual machines (primary
or specific) should be created or removed when necessary.

Algorithm 1 QoS control
Ensure:Wmax = 750ms
Ensure:Wmin = 150ms
while TRUE do
ifW > Wmax then

whileW > Wmax do
start − virtual − server

end while
else

ifW < Wmin then
whileW < Wmin do

stop − virtual − server
end while

end if
end if
sleep(T)

end while

Results and discussion
The following section presents an analysis about how the
response time is affected by increasing the number of
servers in anM/M/m queue. Figure 7 shows how the wait-
ing times (in generic units) of the first queue increases by
increasing the occupation ratio ρ for one, two, ten and
a hundred servers. These values have been obtained by
using the queue simulator server Queue 2.0 [31].
For the second queue, the entering rate is based on

λd. Figure 8 shows the same results as Figure 7 by using
instead the second queue.We have assumed a value of d =
0.9 as the probability of one user accessing the database
servers.
The mean access rate to the database d can widely

vary from one application to another. We have assumed
a 0.9 value due to our experimental application making
requests to the database for 90% of the user requests. We
also did some testing with slightlymodified values of d and
proportional results were obtained.
As was expected, the waiting time of the queue 2 is

smaller than that of queue 1. As the user flow lowers in
the queue 2 also decreases its mean waiting time. Thus,

Figure 7Waiting time on queue 1 (M/M/m). Graph plotting how the waiting times (in generic units) of the first queue increases by increasing the
occupation ratio ρ for one, two, ten and a hundred servers. It shows that increasing the number of servers significantly decreases the resulting
waiting time.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 8 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

Figure 8Waiting time on queue 2 (M/M/m). Graph plotting how the waiting times (in generic units) of the second queue increases by increasing
the occupation ratio ρ for one, two, ten and a hundred servers. It shows that increasing the number of servers significantly decreases the resulting
waiting time.

waiting times decreases with d. W is the sum of waiting
times in queue 1 and 2. Wmax and Wmin will determine
the number of clients/connections to be served simultane-
ously. For example, we could setWmax = 13 if this generic
time value corresponds to 750ms in the real cloud. It has
been shown how a widely used and tested kind of queuing
model can be used to model cloud computing systems.
We would like to highlight that for small numbers of

servers, the relation between the waiting time of both
queues does not change, keeping it at constant levels.
On the other hand, for large computing systems, with
huge computing requirements (virtual servers), the wait-
ing time between the first and the second phase tends to
stabilize when we increase the parameter ρ. Furthermore,
as Figure 9 shows, this relation suffers a significant drop in
large systems with high number of virtual machines. This
explain why queuing systems cannot be applied to model
huge cloud farms of servers.

Conclusions
In this paper, a new application of cloud computing
paradigm is presented by designing a system model
applied to e-Health. The design of a cloud system requires
the use of scalable, centralized, flexible, and dynamic
architectures with a high level of integration. We have
selected queuing theory as the basic mean to model the
performance of the cloud system. As a result, the dynam-
ics of the system based on the creation/deletion of the
virtual systems is controlled by a queuing system model.
Through a preliminary analysis, the design of a cloud

architecture with e-Health requirements has been pro-
posed. The combination of two systems M/M/m in
sequence has been proposed to model the cloud e-Health
platform. The first offers compute services, and the sec-
ond provides service access to a database server. Our work
has shown that to provide good QoS, in terms of aver-
aged waiting times, the the waiting time between the first

Figure 9Waiting time rate. Graph plotting the waiting time ratio between waiting times of the first and second queues with one and a hundred
servers, for different ρ values.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 9 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

and the second phase tends to stabilize. This reduction
becomes much more significant when we increase the
number of virtual machines.
The proposed system can improve the e-Health field

by providing a model to support medical software, sav-
ing resources and enhancing the control and management
of the patients. Pay-per-use service would lower overall
costs. The proposed system would also allow tendencies
that could be used to improve the current treatments to
be generated and analysed. Also, having an electronic clin-
ical history would save paper, physical space and would
improve the efficiency of those who need to access it.
The design can easily satisfy the needs of e-Health related
applications without major changes, allowing the con-
struction of web-based applications that implement all the
needed medical workflows. The proposed system guar-
antees high scalability, ensuring that when the system
requirements grow, the underlying platformwill be able to
handle the situation. Also, the proposed system suggests
the usage of a large shared infrastructure, which would
result in many hospitals and treatments having homo-
geneous data that would facilitate correlations and data
mining.

Future work
As explained above, we would like to extend the algorithm
presented in Quality of service section to determine the
value of T based on ρ. We would like to run more tests
in order to explain how fast can W (waiting time) change
and the proposed system reaction to these changes. Fur-
thermore, it would be of great interest to incorporate
mechanisms for deciding the type of virtual machines that
should be created/deleted (primary or specific servers).
Moreover, we would like to replace both queues with a
more realistic M/M/m/m + r/K model, with m servers,
m + r user connections (the maximum number of users
in the system, that is, users receiving the service, being
at most m, plus users who are waiting, at most r), and a
maximum number of K users as presented in [7]. In our
case, if patients can enter the system, a M/M/m system
could be used, as we would have not a clear reference to
the maximum number of users in the system. In the other
case, if patients can not enter the system, we could take
the M/M/m + r/K approach because we would have a
more specific set of customers. We would want to create
an adaptive system that could select the best model for
each situation. As future work, we also plan to develop
an application by using OpenStack, which will emulate
the requirements of the Tobacco Control Unit in Santa
Maria Hospital (Lleida, Spain), using real data based on
user numbers and requirements. We have already imple-
mented a preliminary prototype [32]. The aim of this work
would be to estimate the computing resources that such
a Tobacco Control Unit would require. In this way, by

knowing the hospital users, we will design a cloud system
applied to e-Health in a specific hospital. This application
should be extended to emulate the behaviour of the system
assuming the scalability of the system by increasing the
number of hospitals.Wewould also like to extend the scal-
ability tests to more than one hundred servers. We would
like to test up to one million servers in order to verify the
scalability of the system.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
JV, RF and DR contributed to the study concept and design of the experimental
tests. JV and JR performed the experimental tests and the data analysis. FS
contributed to the development of the model and the algorithms presented
in this paper, and took the lead in drafting this paper. FS, JV and JR wrote the
first version of the manuscript. All five authors contributed to the preparation
of the manuscript. All authors read and approved the final manuscript.

Authors’ information
JV received his BS and MS in computer science from Universitat de Lleida
(UdL) in 2006 and 2008 respectively. Currently he is a PhD student in the same
University and his research interests are Cloud computing, e-Health, and
parallel simulation.
FS received the B.S., M.S. and Ph.D. degrees in computer science from the
Autonomous University of Barcelona, Spain, in 1991, 1994 and 2002
respectively. At the present time, he is an associate professor in the
Department of Computer Science at the University of Lleida (Spain). His
research interests include distributed processing and HPC.
JR received his B.S., M.S. and Ph.D. in computer science from University of
Lleida (UdL) in 2006, 2008 and 2012 respectively. Currently he is leading the
research division at ICG Software and he is an assistant lecturer at University of
Lleida. His main research interests are high-performance computing, P2P
systems and Cloud computing.
RF received the MS degree in computer science from the University Deusto of
Bilbao in 2003 and the Ph.D degree in computer science University Carlos III of
Madrid in 2010. She had been an assistant professor since 2004 at the
Universidad Carlos III de Madrid. Nowadays she is working as Research
Assistant in University of Edinburgh. Her main reseach interest are high
performance computing, data stream transfer and Cloud Computing.
DR received his BS and PhD in Physics from University of Cantabria in 1998 and
2007 respectively. Currently he is an associate researcher at the Edinburgh
Data Intensive Research group (School of Informatics) and the Brain Research
Imaging Centre (Division of Clinical Neurosciences) of the University of
Edinburgh. His main research interests are information governance, privacy
protection in the e-Health context and data intensive science.

Acknowledgements
This work was supported by the MEyC under contract TIN2011-28689-C02-02.
Some of the authors are members of the research group 2009 SGR145, funded
by the Generalitat de Catalunya.

Author details
1Computer Science Department, University of Lleida, Jaume II 69, 25001
Lleida, Spain. 2Unitat de Tabaquisme of Hospital Santa Maria de Lleida, Alcalde
Rovira Roure, 44, 25198, Lleida, Spain. 3Edinburgh Data-Intensive Research
Group, School of Informatics, The University of Edinburgh, Edinburgh, UK. 4ICG
Software, Pol. Industrial Torrefarrera C. Mestral, s/n 25123 Torrefarrera, Lleida,
Spain.

Received: 17 September 2012 Accepted: 19 February 2013
Published: 14 March 2013

References
1. Free C, et al.: Smoking cessation support delivered via mobile phone

text messaging (txt2stop): a single-blind, randomised trial. Lancet
2011, 378(9785):49–55.



Vilaplana et al. BMCMedical Informatics and DecisionMaking 2013, 13:35 Page 10 of 10
http://www.biomedcentral.com/1472-6947/13/1/35

2. Bobrie G, Chatellier G, Genes N, et al.: Cardiovascular prognosis of
“masked hypertension” detected by blood pressure
self-measurement in elderly treated hypertensive patients. JAMA
2004, 291(11):1342–1349.

3. León A, et al.: A newmultidisciplinary home care telemedicine
system to monitor stable chronic human immunodeficiency
virus-infected patients: A randomized study. PLoS ONE 2011,
6(1):e14515. doi:10.1371/journal.pone.0014515.

4. Kuo AMH: Opportunities and challenges of cloud computing to
improve health care services. J Med Internet Res (JMIR) 2011,
13(3):e67.

5. Rosenthal A, Mork P, Li MH, Standford J, Koester D, Reynolds P: Cloud
computing: A new business paradigm for biomedical information
sharing. J Biomed Inform 2010, 43(2):342–353.

6. Armbrust M, Fox A, Griffith R, Joseph A, Katz R, Konwinski A, Lee G,
Patterson D, Rabkin A, Stoica I, Zaharia V: Above the clouds: A berkeley
view of cloud computing. Technical Report No. UCB/EECS-2009-28.

7. Khazaei H, Misic J, Misic V: Performance analysis of cloud computing
centers using M/G/m/m+r. queuing systems. IEEE Trans Parallel
Distributed Syst 2012, 23:5.

8. Wang L, von Laszewski G, Younge A, He X, Kunze M, Tao J, Fu C: Cloud
computing: A perspective study. New Generation Comput 2010,
28:137–146.

9. Kleinrock L: Queueing Systems: Theory, vol. 1.Wiley-Interscience, 1975.
Published in Russian, 1979. Published in Japanese, 1979. Published in
Hungarian, 1979. Published in Italian 1992.

10. Mao M, Li J, Humphrey M: Cloud auto-scaling with deadline and
budget constraints. In Grid Computing (GRID), 2010 11th IEEE/ACM
International Conference; 2010:41–48.

11. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt
I, Warfield A: Xen and the art of virtualization. SIGOPS Oper Syst Rev
2003, 37(5):164–177.

12. WMWare Staff: Virtualization overview. White paper. [http://www.
vmware.com/pdf/virtualization.pdf]. 2012-08-25.

13. The OpenStack Project: OpenStack: The open source cloud operating
system. [http://www.openstack.org/software/]. 2012-08-25.

14. Mell P, Grance T: The NIST definition of cloud computing.
Gaithersburg: NIST Special Publication 800-145; 2011. 20899-8930.

15. Xiong K, Perros H: Service performance and analysis in cloud
computing. Proc IEEEWorld Conf Serv 2009, 1:693–700.

16. Yang B, Tan F, Dai Y, Guo S: Performance evaluation of cloud service
considering fault recovery. Proc First Int’l Conf Cloud Comput
(CloudCom’09) 2009:571–576.

17. Ma N, Mark J: Approximation of the mean queue length of an M/G/c
queueing system. Oper Res 1998, 43:158–165.

18. Tech:What is Cloud Computing. [http://jobsearchtech.about.com/od/
historyoftechindustry/a/cloud computing.htm]

19. Amazon elastic compute cloud, user guide. API version ed., Amazon
web service LLC or its affiliate. 2010. [http://aws.amazon.com/
documentation/ec2]

20. Baker J, Bond C, Corbett J, Furman JJ, Khorlin A, Larsonand J, Leon JM, Li Y,
Lloyd A, Yushprakh V:Megastore: Providing scalable, highly available
storage for interactive services. Proc Conf Innovative Data Syst Res (CIDR)
2011:223–234.

21. Watson J: VirtualBox: bits and bytes masquerading as machines.
Linux J 2008, 2008(166).

22. Beloglazov A, Buyya R: OpenStack neat: A framework for dynamic
consolidation of virtual machines in OpenStack clouds – A
blueprint. Technical Report CLOUDS-TR-2012-4, Cloud Computing and
Distributed Systems Laboratory, The University of Melbourne 2012.

23. Beloglazov A, Fotuhi S, Alrokayan M, Buyya R: Deploying OpenStack on
CentOS using the KVM Hypervisor and GlusterFS distributed file
system. Technical Report CLOUDS-TR-2012-3, Cloud Computing and
Distributed Systems Laboratory, The University of Melbourne 2012.

24. Burke P: The output of a queuing system. Oper Res 2010, 4:699–704.
25. Burke PJ: The Output of a Queueing System. New York: Bell Telephone

Laboratories-New York; 1956.
26. Jackson JR: Networks of waiting lines. Oper Res 1957, 5:518–521.
27. Jackson JR: Jobshop-like queueing systems.Manag Sci 1963,

10:131–142.

28. Nah F: A study on tolerable waiting time: how long are web users
willing to wait? Behavior and Information Technology 2004,
23(3):153–163.

29. Hoxmeier JA, DiCesare C: System response time and user satisfaction:
an experimental study of browser-based applications. In Proceedings
of the Association of Information Systems Americas Conference; 2000.

30. Shneiderman B: Designing the user interface: strategies for effective
human-computer interaction. Addison-Wesley Longman Publishing
Co., Inc.; 1986. 0-201-16505-8.

31. Queue 2.0 Website. [http://www.win.tue.nl/cow/Q2/]. 2012-08-25.
32. Hesoft Group SCP. [http://www.hesoftgroup.com]. 2012-08-25.

doi:10.1186/1472-6947-13-35
Cite this article as: Vilaplana et al.: The cloud paradigm applied to e-Health.
BMCMedical Informatics and DecisionMaking 2013 13:35.

Submit your next manuscript to BioMed Central
and take full advantage of: 

• Convenient online submission

• Thorough peer review

• No space constraints or color figure charges

• Immediate publication on acceptance

• Inclusion in PubMed, CAS, Scopus and Google Scholar

• Research which is freely available for redistribution

Submit your manuscript at 
www.biomedcentral.com/submit

http://dx.doi.org/10.1371/journal.pone.0014515
http://www.vmware.com/pdf/virtualization.pdf
http://www.vmware.com/pdf/virtualization.pdf
http://www.openstack.org/software/
http://jobsearchtech.about.com/od/historyoftechindustry/a/cloud_computing.htm
http://jobsearchtech.about.com/od/historyoftechindustry/a/cloud_computing.htm
http://aws.amazon.com/documentation/ec2
http://aws.amazon.com/documentation/ec2
http://www.win.tue.nl/cow/Q2/
http://www.hesoftgroup.com

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Background
	Preliminary concepts and related work
	Cloud architecture
	Front-end
	Back-end

	OpenStack

	Methods
	System analysis and design
	Modelling
	M/M/m
	Quality of service

	Algorithm 1 QoS control

	Results and discussion
	Conclusions
	Future work

	Competing interests
	Authors' contributions
	Authors' information
	Acknowledgements
	Author details
	References

