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Abstract

Background: Entity recognition is one of the most primary steps for text analysis and has long attracted
considerable attention from researchers. In the clinical domain, various types of entities, such as clinical entities and
protected health information (PHI), widely exist in clinical texts. Recognizing these entities has become a hot topic
in clinical natural language processing (NLP), and a large number of traditional machine learning methods, such as
support vector machine and conditional random field, have been deployed to recognize entities from clinical texts
in the past few years. In recent years, recurrent neural network (RNN), one of deep learning methods that has
shown great potential on many problems including named entity recognition, also has been gradually used for
entity recognition from clinical texts.

Methods: In this paper, we comprehensively investigate the performance of LSTM (long-short term memory), a
representative variant of RNN, on clinical entity recognition and protected health information recognition. The LSTM
model consists of three layers: input layer – generates representation of each word of a sentence; LSTM layer –
outputs another word representation sequence that captures the context information of each word in this
sentence; Inference layer – makes tagging decisions according to the output of LSTM layer, that is, outputting a
label sequence.

Results: Experiments conducted on corpora of the 2010, 2012 and 2014 i2b2 NLP challenges show that LSTM
achieves highest micro-average F1-scores of 85.81% on the 2010 i2b2 medical concept extraction, 92.29% on the
2012 i2b2 clinical event detection, and 94.37% on the 2014 i2b2 de-identification, which is considerably competitive
with other state-of-the-art systems.

Conclusions: LSTM that requires no hand-crafted feature has great potential on entity recognition from clinical
texts. It outperforms traditional machine learning methods that suffer from fussy feature engineering. A possible
future direction is how to integrate knowledge bases widely existing in the clinical domain into LSTM, which is a
case of our future work. Moreover, how to use LSTM to recognize entities in specific formats is also another
possible future direction.
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Background
With rapid development of electronic medical record
(EMR) systems, more and more EMRs are available for
researches and applications. Entity recognition, one of
the most primary clinical natural language processing
(NLP) tasks, has attracted considerable attention. As a
large number of various types of entities widely exist in
clinical texts, studies on entity recognition from clinical
texts cover clinical entity recognition, clinical event
recognition, protected health information recognition
(PHI), etc. Compared to entity recognition in the news-
wire domain, studies on entity recognition in the clinical
domain are slower initially.
The early entity recognition systems in the clinical

domain are mainly rule-based, such as MedLEE [1],
SymText/MPlus [2, 3], MetaMap [4], KnowledgeMap
[5], cTAKES [6], and HiTEX [7]. In the past several
years, lots of machine learning-based clinical entity rec-
ognition systems have been proposed, may due to some
publicly available corpora provided by organizers of
some shared tasks, such as the Center for Informatics
for Integrating Biology & the Beside (i2b2) 2009 [8],
2010 [9–13], 2012 [14–18] and 2014 track1 [19–23]
datasets, ShARe/CLEF eHealth Evaluation Lab (SHEL)
2013 dataset [24], and SemEval (Semantic Evaluation)
2014 task 7 [25], 2015 task 6 [26] 2015 task 14 [27], and
2016 task 12 [28] datasets. The main machine learning
algorithms used in these systems are those once widely
used for entity recognition in the newswire domain, in-
cluding support vector machine (SVM), hidden markov
model (HMM), conditional random field (CRF) and
structured support vector machine (SSVM), etc. Among
the algorithms, CRF is the most popular one. Most
state-of-the-art systems adopt CRF. For example, in the
2014 i2b2 de-identification challenge, 6 out of 10 were
based on CRF, including all top 4 systems. The key to
the CRF-based systems lies in a variety of features, which
are time-consuming.
In recent years, deep learning, which has advantages

in feature engineering, has been widely introduced into
various fields, such as image processing, speech recog-
nition and NLP, and has shown great potential. In the
case of NLP, deep learning has been deployed to tackle
machine translation [29], relation extraction [30], entity
recognition [31–35], word sense disambiguation [36],
syntax parsing [37, 38], emotion classification [39], etc.
Most related studies are limited to the newswire do-
main rather than other domains such as the clinical
domain.
In this study, we comprehensively investigate entity

recognition from clinical texts based on deep learning.
Long-short term memory (LSTM), a representative vari-
ant of one type of deep learning method (i.e., recurrent
neural network [40]), is deployed to recognize clinical

entities and PHI instances in clinical texts. Specifically,
we investigate the effects of two different types of
character-level word representations on LSTM when
they are used as parts of input of LSTM, and compare
LSTM with CRF and other state-of-the-art systems.
Experiments conducted on corpora of the 2010, 2012
and 2014 i2b2 NLP challenges show that: 1) each type of
character-level word representation is beneficial to
LSTM on entity extraction from clinical texts, but it is
not easy to determine which one is better. 2) LSTM
achieves highest micro-average F1-scores of 85.81% on
the 2010 i2b2 medical concept extraction, 92.29% on the
2012 i2b2 clinical event detection, and 94.37% on the
2014 i2b2 de-identification, which outperforms CRF by
2.12%, 1.47% and 1.79% respectively. 3) Compared with
other state-of-the-art systems, the LSTM-based system
is considerably competitive.
The following sections are organized as: section 2 in-

troduces RNN in detail, experiments and results are pre-
sented in section 3, section 4 discusses the experimental
results and section 5 draws conclusions.

Methods
Entity recognition is usually treated as a sequence label-
ing problem, which can be modeled by RNN. Instead of
traditional RNN, we used Long short-term memory
(LSTM) [41, 42], a variant of RNN that is capable of cap-
turing long-distance dependencies of context and avoid-
ing gradient varnishing or exploding [43, 44], for entity
recognition from clinical texts. The overview architec-
ture of the LSTM used in our study is shown in Fig. 1,
which consists of the following three layers: 1) input
layer - generates representation of each word of a sen-
tence using dictionary lookup, which includes two
parts: token-level representation (denoted by grey
squares) and character-level representation (denoted by
blank squares); 2) LSTM layer – takes the word repre-
sentation sequence of the sentence as input and returns
another sequence that represents context information
of the input at every position; 3) Inference layer –
makes tagging decisions according to the output of the
LSTM layer, that is, outputting a label sequence. Before
introducing each the three layers one-by-one in detail,
we present the LSTM unit first as it is used in both in-
put layer and LSTM layer.

LSTM unit
A LSTM unit is composed of three multiplicative gates:
an input gate, a forget gate and an output gate, which
control the proportion of input information transferred
to a memory cell, the proportion of historical informa-
tion from the previous state to forget, and the propor-
tion of output information to pass on to the next step
respectively. Fig. 2 gives the basic structure of an LSTM
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unit at step t that takes xt, ht-1 and ct-1 as input and pro-
duces ht and ct via the following formulas:

it ¼ σ Wxixt þWhiht−1 þWcict−1 þ bið Þ
f t ¼ σ Wxf xt þWhf ht−1 þWcf ct−1 þ bf

� �

ct ¼ f t⊙ct−1 þ it⊙tanh Wxcxt þWhcht−1 þ bcð Þ
ot ¼ σ Wxoxt þWhoht−1 þWcoct þ boð Þ
ht ¼ ot⊙tanh ctð Þ;

where σ is the element-wise sigmoid function, ☉is the
element-wise product, it, ft and ot are the input, forget,
and output gates, ct is the cell vector, Wi, Wf, Wc, Wo

(with subscripts: x, h and c) are the weight matrices for
input xt, hidden state ht and memory cell ct respectively,
and bi, bf, bc and bo denote the bias vectors.

Input layer
The representation of a word is generated from the fol-
lowing two aspects: token-level and character-level,
which capture context information and morphological
information of the word respectively. The token-level
representation is usually pre-trained by neural lan-
guage models, such as continuous bag-of-words
(CBOW) and skip-gram [45], on a large unlabeled
data. To generate character-level representation, we
can use a bidirectional LSTM, which can capture both
past and future contexts of words, or a convolutional
neural network (CNN) to model the character se-
quences of words (see Fig. 3). In the bidirectional
LSTM (see Fig. 3a), the last two output vectors of the
forward and backward LSTMs (rectangles in grey) are
concatenated into the character-level representation of
the word (i.e., pain). In the CNN (see Fig. 3b, where
chess boards are paddings), the sequence of character
embeddings are convoluted with filters and further
pooled to generate the character-level representation
of the word (i.e., pain). For detailed information about
CNN, please refer to [46].

LSTM layer
A bidirectional LSTM is used to generate context rep-
resentation at every position. Given a sentence s =
w1w2…wn with each word wt (1 ≤ t ≤ n) represented by
xt (i.e., concatenation of token-level and character-
level representations of the word), the bidirectional
LSTM takes a sequence of word representations x =
x1x2…xn as input and produces a sequence of context
representations h = h1h2…hn, where ht = [hft

T, hbt
T]T

(1 ≤ t ≤ n) is a concatenation of outputs of both for-
ward and backward LSTMs.

Fig. 1 Overview architecture of our LSTM

Fig. 2 Structure of an LSTM unit
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Inference layer
Conditional random field (CRF) is employed to predict a
label sequence from a sequence of context representa-
tions. Given a training set D = {(x(i), y(i))| i = 1,…,m} (y(i)

is a label sequence like “… O B-problem I-problem O
…” for clinical entity recognition), all parameters of CRF
(θ) are estimated by maximizing the following log-
likelihood function over D (only 1st order is considered
here):

L θð Þ ¼
Xm

i¼1
logp y ið Þjx ið Þ; θ

� �
; ð1Þ

where

p y ið Þjx ið Þ; θ
� � ¼ p y ið Þjh ið Þ; θ

� �

¼
exp

Xn

t¼1
θ
y ið Þ
t−1
yT
t ið Þht ið Þ

� �
X

y0∈Y x ið Þð Þ exp
Xn

t¼1
θTyt−10 y t0

h
t
ið Þ

� �

Y(x(i)) denotes the set of possible label sequences for x(i).
The goal of inference at test phase is to search the

label sequence y* with the highest conditional
probability:

y� ¼ argmaxy∈Y xð Þp yjx; θð Þ ¼ argmaxy∈Y xð Þp yjh; θð Þ
ð2Þ

Equation 1 and equation 2 can be solved efficiently by
dynamic programing and the Viterbi algorithm
respectively.

It is clear that if interactions between successive labels
are not considered, the inference layer will be simplified
into a softmax output layer to classify each token
individually.

Results
In order to investigate the performance of LSTM on en-
tity recognition from clinical texts, we start with two
baseline systems: 1) a CRF-based system using rich fea-
tures (denoted by CRF); 2) a LSTM-based system only
using token-level word representations in the input layer
(denoted by LSTM-BASELINE), then compare them
with the LSTM-based systems using token-level word
representations and two different types of character-level
word representations. Moreover, we also compare the
LSTM-based systems with other state-of-the-art systems.
Three benchmark datasets from three clinical NLP chal-
lenges: i2b2 (the Center for Informatics for Integrating
Biology & the Beside) 2010, 2012 and 2014 are used to
evaluate the performance of all systems. Both 2010 and
2012 i2b2 NLP challenges have a subtask of clinical en-
tity recognition, and the 2014 i2b2 NLP challenge have a
subtask of PHI recognition.

Datasets and evaluation
Three types of clinical entities, namely problem, test and
treatment, require to be recognized in the 2010 i2b2
NLP challenge, while six types of clinical entities, namely
problem, test, treatment, department, evidential and oc-
currence, in the 2012 i2b2 NLP challenge. In the 2014
i2b2 NLP challenge, seven types of PHI need to be

Fig. 3 Character-level representation generation models. a Bidirectional LSTM. b CNN
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recognized. The detailed statistics of the entity recogni-
tion datasets of the three challenges are listed in Table 1,
where “2010”, “2012” and “2014” denote the i2b2 NLP
challenges in corresponding years, and “#*” denotes the
number of ‘*’.
The performances of all systems are measured by

micro-averaged precision (P), recall (R) and F1-score (F)
under different criteria, which are calculated by the offi-
cial evaluation tools provided by the organizers of the
challenges. A brief introduction of the evaluation criteria
for the three entity recognition tasks is presented in
Table 2, where the key criteria are marked with “*”.

Experimental settings
Before training LSTM, we use the following two simple
rules to split raw texts into sentences and tokenize the
sentences:

1) Sentence split: separate sentences using ‘\n’, ‘.’, ‘?’
and ‘!’.

2) Tokenization: split sentences into tokens by blank
characters at first, and then separate those tokens
composed of more than two types of characters
(letters, digitals and other characters) into smaller
parts that only contains only one type of characters.
For example, “4/16/91CPT Code:” is split into “4/16/
91CPT” and “Code:” at first, and then further
separated into ‘4’, ‘/’, “16”, ‘/’, “91”, “CPT”, “Code”
and ‘:’.

In this study, we use “BIOES” (B-beginning of an en-
tity, I-insider an entity, O-outsider an entity, E-end of an
entity, S-a single-token entity) to represent entities, and
follow previous studies [31–35] to use the stochastic gra-
dient descent (SGD) algorithm for parameter estimation
with hyperparameters as shown in Table 3. The token-
level word representations are pre-trained by word2vec
[45] on a large-scale unlabeled dataset from MEDLINE
and Wikipedia, and the character representations are
randomly initialized from a uniform distribution ranging
in [-1, 1]. Both token-level word representations and
character representations are fine-tuned during training.
We adopt CRFsuite [47] as an implement of CRF, and
the features used in the CRF-based system includes bag-
of-words, part-of-speech, combinations of words and

POS tags, word shapes, affixes, orthographical features,
sentence information, section information, general NER
information, and dictionary features. All model parame-
ters are optimized by 10-fold cross validation on training
datasets.

Experimental results
LSTM only using token-level word representations as in-
put (i.e., LSTM-BASELINE) achieves F1-scores of
85.36% and 92.58% under “exact” and “inexact” criteria
on the 2010 i2b2 challenge test set, F1-scores of 92.20%
and 87.74% under “span” and “type” criteria on the 2012
i2b2 challenge test set, and F1-scores of 93.30% and
96.05% under “exact” and “token” criteria on the 2014
i2b2 challenge test set, as shown in Table 4, much higher
than CRF. The key performance measure differences be-
tween LSTM-BASELINE and CRF on the three test sets
are 1.67%, 1.38% and 0.72%, respectively.
When one type of character-level word representations

(i.e., character-level word representations generated by
LSTM or CNN, denoted by char-LSTM and char-CNN
respectively in Table 4) is added in the input layer as
shown in Fig. 1, the performance of LSTM is slightly im-
proved, LSTM considering char-LSTM (i.e., LSTM+
char-LSTM) achieves a little better performance on the
2010 and 2012 i2b2 NLP challenge test sets, while the
LSTM considering char-CNN (i.e., LSTM+ char-CNN)
achieves a little better performance on the 2014 i2b2

Table 1 Statistics of entity recognition datasets used in our
study

Challenge 2010 2012 2014

Training #Note 349 190 790

#Entity 27837 16468 17405

Test #Note 477 120 514

#Entity 45009 13594 11462

Table 2 Evaluation criteria for the three entity recognition tasks

Challenge Criterion Remarks

2010 Exact* Entities have the same boundary and same type.

Inexact Entities overlap and have the same type.

2012 Span* Entities overlap

Type Entities overlap and have the same type.

2014 Exact* Entities have the same boundary and same type.

Token “Exact” criterion at token-level.

*represents the primary evaluation criterion for each task

Table 3 Hyperparameters chosen for all our experiments

Hyperparameter 2010/2012/2014

Dimension of token-level word representation 50

Dimension of character representation 25

Character-level LSTM size 25

Character-level CNN filter size 3

Character-level CNN filter number 25

Token-level LSTM size 100

Dropout probability 0.5

Learning rate 0.005

Gradient clipping 5.0

Training epochs 50/30/55

The Author(s) BMC Medical Informatics and Decision Making 2017, 17(Suppl 2):67 Page 57 of 100



NLP challenge. No remarkable sign shows which
character-level word representation is better. When both
two types of character-level word representations are
added, the performance of LSTM is not further im-
proved. The highest F1-scores of LSTM are 85.81% and
92.91% under “exact” and “inexact” criteria on the 2010
i2b2 challenge test set, 92.29% and 86.94% under “span”
and “type” criteria on the 2012 i2b2 challenge test set,
and 94.37% and 96.67% under “exact” and “token” cri-
teria on the 2014 i2b2 challenge test set.
Moreover, we also compare “LSTM+ char-LSTM”

with other state-of-art systems including the best sys-
tems of the three challenges and the best up-to-date sys-
tems on the same corpora (as shown in Table 5, where
the starred systems are the best systems of the corre-
sponding challenges). “LSTM+ char-LSTM” significantly
outperforms the best systems of the three challenges.
On the 2010 i2b2 NLP challenge corpus, “LSTM+ char-
LSTM” achieves almost the same F1-score as the current
best system (85.81% vs 85.82%), which is a SSVM-based
system using rich hand-crafted features, under “exact”
criterion. On other two i2b2 NLP challenge corpora,
“LSTM+ char-LSTM” outperforms the current best
systems.

Discussion
In this study, we investigate the performance of LSTM
on entity recognition from clinical texts. The LSTM-
based systems achieves highest F1-scores of 85.81%
under “exact” criterion on the 2010 i2b2 challenge test
set, 92.29% under “span” criterion on the 2012 i2b2 chal-
lenge test set, and 94.37% under “exact” criterion on the
2014 i2b2 challenge test set, which are competitive with
other state-of-the-art systems. The major advantage of
the LSTM-based system is that it does not rely on a
large number of hand-crafted features any more. Simi-
lar to previous studies in the newswire domain, LSTM
shows great potential on entity recognition in the
clinical domain, outperforming most traditional state-
of-the-art methods that suffer from fussy feature en-
gineering such as CRF.
Experiments shown in Table 4 demonstrate that any

one type of the two character-level word representations
is beneficial to entity recognition from clinical texts. The

reason may lie in that both the two types of character-
level word representations have ability to capture some
morphological information of each word such as suffixes
and prefixes, which cannot be captured by the token-level
word representation that relies on word context. Then,
when any one of the character-level word representations
is added into the input layer of LSTM, errors like “Test”
event “URINE” missed in “2014-11-29 05:11 PM URINE”
and hospital “FPC” correctly identified in “… have a PCP
at FPC …” but missed in “… Dr. Harry Tolliver, FPC cardi-
ology unit …” are fixed.
Although the LSTM-based system shows better overall

performance than almost all state-of-the-art systems
mentioned in this study, but it does not show better per-
formance on all types of entities. For example, the best
system on the 2012 i2b2 challenge corpus (i.e., Xu et al.
(2013) [15]) achieves better “span” F1-score than the
LSTM-based system on “Test” events (94.16% vs
93.69%). The best system on the 2014 i2b2 challenge
corpus (i.e., Yang et al. (2015) [20]) achieves better
“exact” F1-score than LSTM-based system on “ID” in-
stances (92.71% vs 91.94%). There are two main reasons:
1) the current LSTM-based system does not use know-
ledge bases widely existing in the clinical domain, but
the other state-of-the-art systems take full advantages of
them; 2) although the character-level word representa-
tion has ability to capture some morphological informa-
tion of each word, it cannot cover morphological
information of specific words such as fixed size digitals.
Therefore, there are two possible directions for further
improvement in our opinion: 1) How to integrate widely
existing knowledge bases into the input of LSTM; 2)
How to use LSTM to recognize entities in specific for-
mats. We will try them in the future.
In recent months, a few studies on deep learning for

entity recognition from clinical text are also proposed.
For example, Abhyuday et al. proposed two RNN-based
models for medical event detection on their own anno-
tated dataset, one of which recognizes medical event de-
tection as a classification problem and the other one as
a sequence labeling problem [48, 49]. Both the two
RNN-based models adopt traditional RNN, which is not
as good as LSTM, and only take token-level word repre-
sentation as their input. Franck et al. deployed a similar

Table 4 Performances of LSTM and CRF-based models for the three tasks (F1-score %)

Model 2010 i2b2 challenge (Concept Extraction) 2012 i2b2 challenge (Event Detection) 2014 i2b2 challenge (De-Identification)

Exact Inexact Span Type Exact Token

CRF 83.69 91.39 90.82 83.72 92.58 95.37

LSTM-BASELINE 85.36 92.58 92.20 87.74 93.30 96.05

LSTM + char-LSTM 85.81 92.91 92.29 86.94 94.29 96.54

LSTM + char-CNN 85.65 92.77 92.25 87.66 94.37 96.67

LSTM + char-LSTM + CNN 85.78 92.76 92.28 87.80 94.16 96.44
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RNN model for the de-identification task on the 2014
i2b2 NLP challenge corpus and the MIMIC dataset [50].
According to the experimental results reported in this
study and the similar studies, we may conclude that our
LSTM outperforms theirs. For example, the F1-score of
the RNN model proposed by Franck et al. on the 2014
i2b2 dataset, as reported, is 97.85% under the binary
HIPAA token criterion (only evaluating the HIPAA-
defined PHI instances under “token” criterion). Under
the same evaluation criterion, the corresponding F1-
score of “LSTM+ char-LSTM” is 98.05% on i2b2-2014
dataset. The results demonstrate that our LSTM outper-
forms RNN proposed by Franck et al [50]. Therefore,
the results reported in this study can be a new bench-
mark system based on deep learning methods.

Conclusions
In this study, we comprehensively investigate the per-
formance of recurrent neural network (i.e., LSTM) on
clinical entity recognition and protected health informa-
tion (PHI) recognition. Experiments on the 2010, 2012
and 2014 i2b2 NLP challenge corpora prove that 1)
LSTM outperforms CRF; 2) By introducing two types of
character-level word representations into the input layer
of LSTM, LSTM is further improved; 3) the final LSTM-
based system is competitive with other state-of-the-art
systems. Furthermore, we also point out two possible di-
rections for further improvement.
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