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Abstract

Background: Disease trajectories for chronic diseases can span over several decades, with several time-dependent
factors affecting treatment decisions. Thus, there is a need for long-term predictions of disease trajectories to
inform patients and healthcare professionals on the long-term outcomes and provide information on the need of
future health care. Here, we propose a state transition model to describe and predict disease trajectories up to 25
years after diagnosis in men with prostate cancer (PCa), as a proof of principle.

Methods: States, state transitions, and transition probabilities were identified and estimated in Prostate Cancer data
Base of Sweden (PCBaSeTraject), using nationwide population-based data from 118,743 men diagnosed with PCa. A
state transition model in discrete time steps (i.e., 4 weeks) was developed and applied to capture all possible
transitions (PCBaSeSim). Transition probabilities were estimated for changes in both treatment and comorbidity.
These models combined yielded parameter estimates to run an individual-level simulation based on the state-
transition model to obtain prediction estimates. Predicted estimates were then compared to real world data in
PCBaSeTraject.

Results: PCBaSeSim estimates for the cumulative incidence of first and second transitions, death from PCa and
death from other causes were compared to observed transitions in PCBaSeTraject. A good agreement was found
between simulated and observed estimates.

Conclusions: We developed a reliable and accurate simulation tool, PCBaSeSim that provides information on
disease trajectories for subjects with a chronic disease on an individual and population-based level.
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Background
Many previously fatal diseases have become chronic dis-
eases due to improvements in diagnosis and treatment [1].
These disease pathways (referred to as disease trajectories
below) can span over several decades and incorporate a var-
iety of treatments and outcomes. Moreover, ageing and in-
creasing comorbidity will affect treatment decisions. Thus,
there is a need to predict disease trajectories for several de-
cades to inform patients and healthcare professionals on the

long-term outcomes of disease and provide information on
the need of future health care [2].
There is a wide range in the clinical course of prostate

cancer (PCa) [3]. Due to improvements in detection, diag-
nostics, and treatment, many men currently diagnosed
with PCa have a low risk of PCa death during the first 15
years after diagnosis and hence for many men PCa has be-
come a chronic disease, albeit with a small risk of progres-
sion many years after date of diagnosis [4].
This study aimed to create a model to describe and

predict disease trajectories over a period of 25 years
using PCa as a proof of principle for a chronic disease.
More specifically, we used data on PCa from nationwide,
population-based health care registers in Sweden to pre-
dict disease trajectories in men with different disease
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severity, comorbidities, and treatments using state tran-
sition models.

Methods
Study population
This study was based on 118,743 men diagnosed with
PCa from 1992 until 2014 who were registered in The
National Prostate Cancer Register (NPCR) Sweden [5].
Men with unknown disease severity at time of diagnosis
(3%) were excluded [6]. By use of the unique Swedish
personal identity number, NPCR has been linked to
other population-based healthcare registers and demo-
graphic databases to form the Prostate Cancer data Base
Sweden (PCBaSeTraject). This provided additional infor-
mation on cause of death, comorbidities, drug use, and
socio-economic status, and treatment changes [7, 8]. Co-
morbidities were specifically measured with the Charl-
son comorbidity index (CCI), which was based on
discharge diagnoses retrieved from the National Patient
Register and the National Cancer Register [9]. The link-
age of PCBaSe was approved by the Research Ethics
Board at Umeå University.

The men were divided into five groups based on the
primary management strategy: active surveillance (AS),
radical prostatectomy (RP), radiotherapy (RT) performed
as either external beam radio therapy or brachy therapy,
watchful waiting (WW), and androgen deprivation ther-
apy (ADT). Different risk categories were defined for
each management strategy. For AS risk categories, we
applied a modification of the National Comprehensive
Cancer Network guidelines [10]. The two lowest NCCN
risk categories (low and intermediate-risk PCa) were di-
vided into two subgroups each. The least favourable
intermediate-risk category was not considered as suit-
able for AS, resulting in three AS risk categories (Add-
itional file 2: Table S1). Curative treatment consisted of
RP or RT, which could be either primary treatment or
initiated after a period of AS, i.e. deferred RP or RT. Pri-
mary and deferred RPs were divided into six risk cat-
egories based on pathological tumour stage (pT stage)
and pathological Gleason Grade Group (pGGG) as re-
corded in NPCR (Additional file 2: Table S2). Primary
and deferred RT was divided into eight risk categories
(Additional file 2: Table S3). WW as primary management

Fig. 1 States and state transitions in Prostate Cancer data Base of SwedenSim (PCBaSeSim). State transition model of transitions (arrows) between
states (circles) for men diagnosed with prostate cancer. The states are active surveillance (AS), watchful waiting (WW), curative treatment; radical
prostatectomy (RP) or radiotherapy (RT), adjuvant or salvage radiotherapy following RP (RT-adj/salv), androgen deprivation therapy (ADT), death
from other causes, and prostate cancer death. Dashed lines represent the choice of primary treatment following diagnosis (not part of the
model), solid lines are transitions included in the models. Multi-colored circles represent transient states with colors indicating the proportion of
men with increasing disease risk categories defined by data at date of diagnosis. Orange circles represent absorbing states. Dashed circles
represent additional information gathered to facilitate estimates of transition probabilities, i.e. biopsy and Charlson Comorbidity Index (CCI). Risk
categories are defined in detail in the Additional file 1
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Table 1 Baseline characteristics for men in Prostate Cancer data Base Sweden (PCBaSe)Traject

Deferred
treatment as part
of AS ➔ WW
model
(n = 23,649)

Deferred
treatment
WW
(n = 7286)

Radical
prostatectomy
RP
(n = 32,537)

Radio therapy
RT
(n = 19,019)

Anti-androgen
monotherapy
AA
(n = 7178)

Gonadotropin
releasing
hormone
agonists
GnRH
(n = 29,074)

Total
(n = 118,743)

Age, median (Q1-Q3) 69 (64–74) 77 (73–81) 63 (59–67) 67 (62–71) 76 (71–81) 77 (71–82) 69 (63–76)

Age, n (%)

≤ 55 1008 (4.3) 33 (0.5) 4120 (12.7) 875 (4.6) 55 (0.8) 341 (1.2) 6432 (5.4)

56–60 2332 (9.9) 116 (1.6) 6942 (21.3) 2403 (12.6) 153 (2.1) 803 (2.8) 12,749 (10.7)

61–65 4543 (19.2) 296 (4.1) 10,356 (31.8) 4775 (25.1) 475 (6.6) 1959 (6.7) 22,404 (18.9)

66–70 6172 (26.1) 800 (11.0) 8635 (26.5) 6053 (31.8) 964 (13.4) 3535 (12.2) 26,159 (22.0)

71–80 8241 (34.8) 3929 (53.9) 2461 (7.6) 4880 (25.7) 3734 (52.0) 13,167 (45.3) 36,412 (30.7)

81+ 1353 (5.7) 2112 (29.0) 23 (0.1) 33 (0.2) 1797 (25.0) 9266 (31.9) 14,584 (12.3)

Year of diagnosis, n (%)

1992–1997 558 (2.4) 243 (3.3) 513 (1.6) 245 (1.3) 22 (0.3) 561 (1.9) 2142 (1.8)

1998–2004 4472 (18.9) 2144 (29.4) 7113 (21.9) 5373 (28.3) 1024 (14.3) 8672 (29.8) 28,798 (24.3)

2005–2008 5770 (24.4) 2369 (32.5) 9363 (28.8) 4894 (25.7) 1742 (24.3) 9353 (32.2) 33,491 (28.2)

2009–2011 5969 (25.2) 1679 (23.0) 7911 (24.3) 4804 (25.3) 1841 (25.6) 5893 (20.3) 28,097 (23.7)

2012–2014 6880 (29.1) 851 (11.7) 7637 (23.5) 3703 (19.5) 2549 (35.5) 4595 (15.8) 26,215 (22.1)

T stage, n (%)

T1a 2564 (10.8) 440 (6.0) 276 (0.8) 99 (0.5) 25 (0.3) 129 (0.4) 3533 (3.0)

T1b 963 (4.1) 499 (6.8) 247 (0.8) 194 (1.0) 101 (1.4) 365 (1.3) 2369 (2.0)

T1c 15,243 (64.5) 2373 (32.6) 20,010 (61.5) 7496 (39.4) 1580 (22.0) 3559 (12.2) 50,261 (42.3)

T2 4738 (20.0) 2464 (33.8) 10,881 (33.4) 7201 (37.9) 2659 (37.0) 8927 (30.7) 36,870 (31.1)

T3 0 (0.0) 1362 (18.7) 979 (3.0) 3883 (20.4) 2436 (33.9) 12,517 (43.1) 21,177 (17.8)

T4 0 (0.0) 49 (0.7) 12 (0.0) 71 (0.4) 280 (3.9) 3002 (10.3) 3414 (2.9)

TX/Missing 141 (0.6) 99 (1.4) 132 (0.4) 75 (0.4) 97 (1.4) 575 (2.0) 1119 (0.9)

N stage, n (%)

N0 1831 (7.7) 292 (4.0) 7472 (23.0) 6004 (31.6) 766 (10.7) 1418 (4.9) 17,783 (15.0)

N1 0 (0.0) 44 (0.6) 278 (0.9) 317 (1.7) 321 (4.5) 1627 (5.6) 2587 (2.2)

NX 21,818 (92.3) 6950 (95.4) 24,787 (76.2) 12,698 (66.8) 6091 (84.9) 26,029 (89.5) 98,373 (82.8)

Gleason Grade Group /WHO, n (%)

GGG1 20,019 (84.7) 2860 (39.3) 16,783 (51.6) 6653 (35.0) 1181 (16.5) 3226 (11.1) 50,722 (42.7)

GGG2 2295 (9.7) 1469 (20.2) 8564 (26.3) 4750 (25.0) 1537 (21.4) 3398 (11.7) 22,013 (18.5)

GGG3 969 (13.3) 3291 (10.1) 3007 (15.8) 1476 (20.6) 4209 (14.5) 12,952 (10.9)

GGG2–3 202 (0.9) 257 (3.5) 790 (2.4) 388 (2.0) 168 (2.3) 1331 (4.6) 3136 (2.6)

GGG4 662 (9.1) 1792 (5.5) 2025 (10.6) 1321 (18.4) 6155 (21.2) 11,955 (10.1)

GGG5 202 (2.8) 687 (2.1) 1496 (7.9) 1028 (14.3) 6874 (23.6) 10,287 (8.7)

Only WHO-grade 1096 (4.6) 740 (10.2) 600 (1.8) 671 (3.5) 315 (4.4) 3055 (10.5) 6477 (5.5)

Missing 37 (0.2) 127 (1.7) 30 (0.1) 29 (0.2) 152 (2.1) 826 (2.8) 1201 (1.0)

PSA, median (Q1-Q3) 6.0 (4.2–8.2) 18 (12–26) 6.8 (4.8–10) 10 (6.4–18) 22 (12–47) 45 (19–139) 9.9 (5.8–24)

Mode of detection, n (%)

Screeningf 10,024 (42.4) 1842 (25.3) 17,060 (52.4) 8119 (42.7) 2020 (28.1) 3912 (13.5) 42,977 (36.2)

LUTS 7705 (32.6) 2572 (35.3) 7453 (22.9) 5133 (27.0) 3134 (43.7) 12,024 (41.4) 38,021 (32.0)

Other symptoms 4258 (18.0) 2127 (29.2) 5606 (17.2) 4244 (22.3) 1743 (24.3) 10,962 (37.7) 28,940 (24.4)

Missing 1662 (7.0) 745 (10.2) 2418 (7.4) 1523 (8.0) 281 (3.9) 2176 (7.5) 8805 (7.4)
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strategy was classified into six risk categories, based on T
stage, N stage, M stage, serum levels of prostate-specific
antigen (PSA), and Gleason Grade Group (GGG) (Add-
itional file 2: Table S4).
Men receiving ADT were divided into eight risk cat-

egories (Additional file 2: Table S5). ADT consisted of ei-
ther antiandrogen monotherapy (AA) or gonadotropin-
releasing hormone (GnRH) agonists (Additional file 2:
Figure S1). For all treatment-specific risk categories, the
lowest category indicated men with the most favourable
risk.

Missing data
There is no specific follow-up data in NPCR. For example,
men primarily managed with AS who eventually experi-
ence disease progression can be treated with curative
intention with RP or RT. At this point, the updated TNM
stage, GGG and PSA have not routinely been reported to
NPCR. This yields a missing data problem. We solved this
problem by applying multiple imputation by chained
equations [11] using five imputation datasets. Similar
problems with lack of detailed disease progression data
also appeared for other non-primary treatments, where
change was triggered by disease progression and these sit-
uations were also solved by multiple imputation. Further

details regarding imputation models are presented in the
Additional file 1.

Analysis
We applied a method based on a state transition model
(Fig. 1). Men diagnosed with PCa entered their primary
state according to their primary treatment (AS, RP, RT,
WW, ADT) and their treatment specific risk category
(AS1-AS3, RP1-RP6, RT1-RT8, WW1-WW6, and ADT1-
ADT8). The probability of a transition to another state
was based on age, comorbidity, history of previous treat-
ments, and treatment-specific risk category. All transitions
were considered irreversible and state transitions were
allowed until an absorbing state, i.e. PCa-death or death
from other causes, was reached. Transitions between
treatment-specific risk categories were not considered, i.e.
each man stayed in his designated treatment risk category
until a new treatment was introduced. Our model building
consisted of several steps:
First, we randomly split our set of data in two equally

large subsets, the first set was a training set that was used
to estimate transition probabilities and the second set was
used to assess internal validity of the simulation process.
Second, we simplified follow-up time by use of four-

week time steps. At the end of each time step a man ei-
ther remained in his current state or transited to a new

Table 1 Baseline characteristics for men in Prostate Cancer data Base Sweden (PCBaSe)Traject (Continued)

Deferred
treatment as part
of AS ➔ WW
model
(n = 23,649)

Deferred
treatment
WW
(n = 7286)

Radical
prostatectomy
RP
(n = 32,537)

Radio therapy
RT
(n = 19,019)

Anti-androgen
monotherapy
AA
(n = 7178)

Gonadotropin
releasing
hormone
agonists
GnRH
(n = 29,074)

Total
(n = 118,743)

CCI, n (%)

0 15,370 (65.0) 4257 (58.4) 25,259 (77.6) 13,369 (70.3) 4275 (59.6) 16,427 (56.5) 78,957 (66.5)

1 4228 (17.9) 1435 (19.7) 3955 (12.2) 3172 (16.7) 1461 (20.4) 6179 (21.3) 20,430 (17.2)

2 2356 (10.0) 945 (13.0) 1971 (6.1) 1511 (7.9) 806 (11.2) 3737 (12.9) 11,326 (9.5)

3+ 1695 (7.2) 649 (8.9) 1352 (4.2) 967 (5.1) 636 (8.9) 2731 (9.4) 8030 (6.8)

Risk category, n (%)

1 7546a (31.9) 1001b ‘(13.7) 8985c (27.6) 3735d (19.6) 922e (12.8) 6854e (23.6)

2 13,515a (57.1) 1004b ‘(13.8) 9997c (30.7) 1563d (8.2) 870e (12.1) 2585e (8.9)

3 2588a (10.9) 947b ‘(13.0) 5094c (15.7) 2285d (12.0) 1495e (20.8) 2855e (9.8)

4 1307b ‘(17.9) 5893c (18.1) 2805d (14.7) 1162e (16.2) 1811e (6.2)

5 1281b ‘(17.6) 2480c (7.6) 1844d (9.7) 1007e (14.0) 3605e (12.4)

6 1746b ‘(24.0) 88c (0.3) 2146d (11.3) 634e (8.8) 2468e (8.5)

7 2658d (14.0) 492e (6.9) 1231e (4.2)

8 1983d (10.4) 596e (8.3) 7665e (26.4)

CCI Charlson comorbidity index, LUTS lower urinary tract symptoms
aRisk categories AS1- AS3
bRisk categories WW1-WW6
cRisk categories RP1-RP6
dRisk categories RT1-RT8
eRisk categories ADT1-ADT8
fScreening, prostate cancer detected due to work-up after PSA testing in asymptomatic men
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state. The discretised follow-up data was arranged using
long format, i.e., each man was represented by several
rows of data, one for each time step in which he was
alive. Age and CCI were updated in each time step.
Next, we estimated state transition probabilities,

which were determined from both registered and non-
registered data regarding date of treatment change.
Specifically, for all treatment state transitions, except
the transition from AS ➔ WW, the date of treatment
change was retrieved from PCBaSeTraject using the
training set of data. Left truncation on January 1, 2006,
was used as previously described [8]. The non-registered
transition date for the transition of AS ➔ WW was

managed as previously described [12] (Additional file 2:
Figures S2 and S3). We considered a change in CCI as a
state transition. For such a CCI transition, we applied a
CCI state transition model as previously described [9]. The
probability of CCI changes was state-specific, i.e. different
CCI model parameters were estimated for each state.
Finally, our prediction was carried out as a microsi-

mulation, an individual-level simulation based on the
state-transition model [13]. Simulations were per-
formed for each specific combination of treatment,
age and CCI at treatment start, and treatment-specific
risk categories. The simulation process consisted of three
different steps, which are described in brief below. Further

Fig. 2 Cumulative incidence of first observed and simulated transition according to primary management strategy in men with prostate cancer in
PCBaSe. Graphs show the cumulative incidence of first observed transition in PCBaSeTraject (continuous line) compared to the cumulative
incidence of first simulated transition in PCBaSeSim (dashed lines). PCBaSeSim transitions are based on the simulation of men in PCBaSeTraject

stratified by primary management strategy. AA: anti-androgens; GnRH: gonadotropin releasing hormone agonists; PC: prostate cancer; RP: radical
prostatectomy; RT: radiotherapy; WW: watchful waiting
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details and specifications can be found in the Additional
file 1.

1) A man’s vital status at the end of each time step
was determined as alive, dead from PCa or dead
from other causes. The probability of PCa death
was modelled in a logistic regression, whereas the
probability of death from other causes was
modelled conditioned on no previous PCa death in

a second logistic regression (see Additional file 1 for
further details).

2) For a man who was alive at the end of a time step,
we determined if a treatment change had occurred.
Such change could be either direct, when the
treatment risk category in the new state was known
and remained unchanged, e.g. RP RTadj/salv, or
preceded by an estimation of new treatment-
specific risk category (Additional file 2: Table S6). In

Fig. 3 Cumulative incidence of second observed and simulated transition according to primary management strategy in men diagnosed with
prostate cancer and primarily treated with radical prostatectomy and radiotherapy. Graphs show the cumulative incidence of second observed
transition in PCBaSeTraject (continuous line) compared to the cumulative incidence of second simulated transition in PCBaSeSim (dashed lines).
PCBaSeSim transitions are based on the simulation of men in PCBaSeTraject primarily treated with radical prostatectomy and radiotherapy. AA: anti-
androgens; GnRH: gonadotropin releasing hormone agonists; PC: prostate cancer; RP: radical prostatectomy; RT: radiotherapy

Fig. 4 Prostate cancer death and death from other causes in PCBaSeTraject and PCBaSeSim. Graphs show the cumulative incidence of prostate
cancer death and death from other causes (i.e. final absorbing states) in PCBaSeTraject (observed, continuous line) compared to PCBaSeSim

(simulated, dashed lines). PCBaSeSim transitions are based on the simulation of men in PCBaSeTraject
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the latter case, an ordinal regression analysis deter-
mined the new risk category, at the same time step
as the transition.

3) If a man was alive at the end of a time step, CCI
was updated, according to a separate CCI transition
model based on a combination of Poisson
regression and logistic regression models, as
described previously [9]. The CCI transition model
was specific for each individual treatment.

We refer to this simulation method in the following text
as PCBaSeSim. Further specifications of possible transitions
and used models are provided in the Additional file 1. In
order to assess internal validity of PCBaSeSim, we graphic-
ally compared cumulative incidence of subsequent transi-
tions obtained from the simulation with those observed in
validation set.

Results
The study population consisted of 118,743 men diag-
nosed with PCa and included in NPCR. Most of these
men (n = 32,537, 27%) were primarily managed with RP
(Table 1). Detailed characteristics of men included in
PCBaSeTraject were previously described [7, 8].
Our proposed model starts at time of PCa diagnosis

and ends in either of the following absorbing states:
death from PCa or death from other causes. Figure 1 il-
lustrates states and state transitions, with all the possible
treatment changes included in the model.
To assess the internal validity of the simulation, the

cumulative incidence of the first transitions observed in
PCBaSeTraject was compared with the simulated first
transitions for the same men up to 25 years after diagno-
sis. To decrease random error, we ran the simulation
100 times for each man. Observed and simulated first
transitions almost perfectly overlapped for all groups
(Fig. 2). At ten years after RP, 21% of the observed
PCBaSeTraject cohort had transitioned to adjuvant/sal-
vage radiotherapy vs. 20% as predicted by PCBaSeSim.
Estimates at 20-years were still consistent for all the ana-
lysed primary management strategies (e.g., 5% of men
treated with primary RP received GnRH agonists in both
PCBaSeTraject and PCBaSeSim).
Similarly, we analysed second transitions. Men first

treated with RP or RT, which are the most common treat-
ment strategies overall for PCa, were followed until their
second transition. Also in this model, the observed and
simulated cumulative incidences were very similar, e.g. 10-
year proportion of men treated with primary RT and later
receiving GnRH agonists was 5% in both PCBaSeTraject

and PCBaSeSim. At 15 years these proportions were 7% in
PCBaSeTraject and 9% in PCBaSeSim, respectively (Fig. 3).
Eventually, the agreement between predicted vs. observed

cumulative incidence of death was acceptable for both
PCa and other causes of death (Fig. 4).

Discussion
We developed, applied, and tested a novel state transi-
tion model, based on longitudinal data in health care
registers including men with PCa, to predict long term
disease trajectories. More specifically, we tested the ac-
curacy of first and second transitions (i.e. treatment
changes), as well as the transitions to final absorbing
states, by comparing observed data vs. data obtained by
our newly developed tool, PCBaSeSim.
Treatment decisions are a challenging process in real

life, as well as predictions of health-related outcomes.
Due to the long life expectancy, e.g. > 20 years for
healthy men with low-risk PCa [4], and the availability
of many therapeutic options [3], PCa disease trajectories
can thus be difficult to predict at time of diagnosis.
These pathways include different treatment options and
may be protracted over time. Although international
guidelines recommend therapeutic options according to
disease status, there are several combinations of disease
states and life expectancy for which there is little evi-
dence to support treatment decisions [3]. Moreover, re-
cently introduced management strategies, e.g. active
surveillance, lack long-termfollow-up, so there are no
data on which to base outcome predictions. Previous at-
tempts have been made to implement state-transition
models in urology [14, 15] and other medical areas [16],
mainly from the health-economy standpoint. However,
these attempts were not based on a detailed and com-
prehensive, population-based source of data, such as
PCBaSeTraject. Therefore, previous models have not been
validated against real world data. In contrast, the state
transition model we propose in this paper was compared
with real world data, and provides as a user-friendly data
output that makes both interpretation of results and rep-
licability easy.
More specifically, these results provide a proof-of-

principle for state transition models that can be applied to
many other chronic diseases for which there is also a need
for long term predictions of outcomes. Using complete na-
tionwide, population-based data of ~ 120,000 Swedish men
with PCa [8], we were able to develop a simulation
programme, PCBaSeSim, which reliably models treatment
changes up until 25 years after diagnosis. To assess the reli-
ability of our state transition model, we compared real-
worldfollow-up data in PCBaSeTraject with simulated data
from PCBaSeSim. We found that observed and simulated
transition profiles were overlapping and consistent, sug-
gesting that PCBaSeSim estimates were accurate and reli-
able. Moreover, in PCBaSeSim, it is possible to set baseline
parameter (e.g. number of subjects, initial state, subject-
and disease-specific features, temporal duration of the
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simulation) prior to starting the simulation process. Dur-
ing the simulation, individual features are constantly up-
dated (e.g. age increase, comorbidity changes [9]) and
used for estimation of transition probabilities. Once a
simulation is complete (i.e. end of virtual follow-up time),
it is possible to retrieve every change in both treatment
and individual characteristics (i.e. age, CCI, and risk
group).
Our proposed state transition modelling approach

consistently differs from conventional survival analyses
and prediction tools, which focus on a single outcome
over time, with little information regarding the actual
path that leads to a specific outcome and the changes in
the disease trajectory [17]. Conventional survival ana-
lyses inevitably result in a consistent loss of information
and accuracy, especially when dealing with extended
follow-up times. We have previously shown that it is
possible to model temporal changes in comorbidity for
cancer patients [9]. In PCBaSeSim, thanks to the continu-
ous update of baseline characteristics at the end of every
time step, not only are the predictions likely to be accur-
ate, but also is it possible to keep track of individual and
disease-specific features and trajectories. Although the
difference in model fit between time-updated CCI and
CCI only measured at baseline was small (data not
shown), we used the time-updated CCI since this ap-
proach was crucial to solve the problem of non-
registered AS ➔ WW transition [12]. Therefore, in order
to be congruent with our previous publication [12] as
well as with future studies on health economy, we sup-
port the use of time-updated CCI since increases in co-
morbidity are related to increased costs and therefore
affect treatment decisions.
Moreover, PCBaSeSim makes it possible to model dis-

ease trajectories over a long time-horizon and can there-
fore make long-term predictions even in the absence of
“observed” (i.e. registered) data. Eventually, the flexibility
of the model allows to include novel modelling parame-
ters and states.
The main limitation of our proposed model is the ab-

sence of an external validation. However, PCBaSeSim is
ready to be tested in an external setting, and the authors
welcome collaborators to validate our simulation program.
It is worth noticing that in PCBaSeTraject, we had to use left
truncation on January 1, 2006 since the Swedish Prescribed
Drug Registry was initiated on July 1, 2005 [8]. The rela-
tively low number of diagnosis during the early PCBaSeRapid

period is caused by this left truncation. This could theoret-
ically limit the predictive power of PCBaSeSim. On the
other hand, we argue that the most recent data are the
most valuable for prediction for current patients and that
therefore it is advantageous that the impact of historically
older diagnosis and treatments on predictions was limited
by the use of this approach. Further limitations include

the use of administrative data for the definition of comor-
bidities, though it has previously been shown that the ac-
curacy of ICD codes for discharge diagnoses in the Patient
Registry is high in the range of 85–95% [18]. Another limi-
tation is represented by missing data related on some
transitions/risk categories. However, we have previously
[12] and in this current study provided reliable solutions
to these issues.

Conclusion
We developed a reliable and accurate simulation tool,
PCBaSeSim, to provide information to patients and health-
care professionals, on an individual as well as population-
based level on treatment trajectories. Aside from clinical
implications, our model provides information applicable
to healthcare resources allocation. Since it is possible to
keep track of specific disease trajectories including the
mean time spent in each state, estimates for costs can be
obtained by use of our model.
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