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Abstract

Background: Although previous research showed that telehealth services can reduce the misuse of resources and
urban-rural disparities, most healthcare insurers do not include telehealth services in their health insurance schemes.
Therefore, no target variable exists for the classification approaches to learn from or train with. The problem of
identifying the potential recipients of telehealth services when introducing telehealth services into health welfare or
health insurance schemes becomes an unsupervised classification problem without a target variable.

Methods: We propose a HDTTCA approach, which is a systematic approach (the main process of HDTTCA
involves (1) data set preprocessing, (2) decision tree model building, and (3) predicting and explaining of the
most important attributes in the data set for patients who qualify for telehealth service) to identify those who
are eligible for telehealth services.

Results: This work uses data from the NHIRD provided by the NHIA in Taiwan in 2012 as our research scope,
which consist of 55,389 distinct hospitals and 653,209 distinct patients with 15,882,153 outpatient and 135,775
inpatient records. After HDTTCA produces the final version of the decision tree, the rules can be used to
assign the values of the target variables in the entire NHIRD. Our data indicate that 3.56% (23,262 out of 653,
209) of the patients are eligible for telehealth services in 2012. This study verifies the efficiency and validity of
HDTTCA by using a large data set from the NHI of Taiwan.

Conclusion: This study conducts a series of experiments 30 times to compare the HDTTCA results with the logistic
regression findings by measuring their average performance and determining which model addresses the telehealth
patient classification problem better. Four important metrics are used to compare the results. In terms of sensitivity, the
decision trees generated by HDTTCA and the logistic regression model are on equal grounds. In terms of accuracy,
specificity, and precision, the decision tree generated by HDTTCA provides a better performance than that of the
logistic regression model. When HDTTCA is applied, the decision tree model generates a competitive performance and
provides clear, easily understandable rules. Therefore, HDTTCA is a suitable choice in solving telehealth service
classification problems.
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Background

The concept of telehealth, which first appeared in the
1900s when physicians began discussing diseases by tele-
phone and has evolved to such a sophisticated level of per-
forming robotic surgery, regardless of the geographical
restrictions, is possible at present [19]. Telehealth uses elec-
tronic information and communication technology to de-
liver health and medical information and services over large
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and small distances [11, 19]. The U.S. Health Resources
and Services Administration defines telehealth as “the use
of electronic information and telecommunications tech-
nologies to support long-distance clinical health care, pa-
tient and professional health-related education, public
health, and health administration” [7]. For chronically ill pa-
tients and people with disability who require frequent up-
dates of health parameters, telehealth services can provide
convenience, mobility, and ease of use. As the aging popu-
lation and people with disability increase, teleassistance and
telemonitoring platforms play increasingly significant roles
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in delivering efficient and low-cost remote care in assisted
living environments [22].

The emergence of wireless technologies and the advance-
ments in on-body sensor design can facilitate changes in
the conventional healthcare system by replacing it with
wearable healthcare systems centered on individuals [21].
For example, devices and techniques in monitoring blood
pressure, blood glucose level, cardiac activity, and respira-
tory activity are recent advances in noninvasive monitoring
technologies for chronic disease management. Patients can
improve or maintain their health states by using telecom-
munication and information technology without the need
to schedule in-person healthcare visits. However, designing
a telemetry system for health monitoring is complicated
and expensive, and insurance providers must carefully con-
sider and calculate who will benefit most from it.

A new concept called elderly welfare, which incorporates
health welfare and the development of a telehealth system
for the aging population, also has emerged. The telecare in-
dustry has expanded worldwide. Many countries, such as
Japan, the United Kingdom, the United States, and Canada,
have developed long-term care assistance policies to utilize
telehealth systems [5, 6, 18]. Previous studies [2, 10, 13]
summarized the benefits of adopting telehealth systems for
three stakeholders namely, (1) cost-saving for patients and
health care facilities, (2) far-reaching care for patients, (3)
reduced delays in medical treatment for chronic patients,
(4) reductions in healthcare facility admission rates and
duration of outpatient visits, and (5) improved quality of life
for countries as a whole.

If patients must pay their own expenses for telehealth
services without insurance reimbursement, then extremely
few patients will have motivation to use these services [12,
15]. However, an elderly patient who lives alone in a remote
village may spend more than 8h in transit to see a phys-
ician in a healthcare facility, which can actually worsen a
patient’s chronic disease condition. For example, patients
with diabetes or hypertension may be unaware of an abnor-
mality and miss the crucial time to see a physician. Tele-
health services can reduce the urban—rural gap in allowing
for patients in remote areas to medical resources without
long transport time [12, 15].

When Taiwan introduced its National Health Insurance
(NHI) plan in 1995, the Department of Health also intro-
duced a pilot project in providing telehealth services [12].
Nevertheless, a review of the government plan in 2013 [16]
showed that the number of cumulative applicants is only
9606 with up to 343,000 times of services at the end of
2011. Researchers have identified several main reasons why
patients in Taiwan seldom use telehealth services. First, pa-
tients are willing to pay less than 1000 New Taiwan Dollars
(NTD) monthly on the average for a telehealth service, but
renting remote physiological monitoring equipment costs
at least 3000 NTD monthly, excluding service fees [12].
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Second, outpatients prefer receiving medical advice in per-
son, and they are not accustomed to use the telehealth ser-
vices [20]. Third, because telehealth services are excluded
in NHI coverage, paying for prevention is not an attractive
option compared with the deductibles in medical treatment
[6]. Despite these reasons, researchers [3, 4, 9, 11] still
found numerous social benefits of using telehealth services,
including reductions in hospitalization frequency, health-
care facility medical costs, and caregiver’s burden.

Given that health insurance policy has not officially rec-
ognized telehealth services as an efficient treatment, we
have no information to compute the cost and benefit of
using them if they are reimbursed by health insurances. All
patients must be classified into two groups, namely, “need
telehealth service” and “do not need telehealth service”
which will be a time-consuming task without computer aid.
Thus, a proper classification algorithm developed with tele-
health experts’ assistance is necessary. Among the many
classification algorithms, decision trees are the most suit-
able one because they are simpler to understand and inter-
pret than association rules or logistic regression. Decision
trees also require a simple data preparation stage and can
handle categorical data.

This study aims to address the problem of identifying
the patients who are the best candidates in receiving tel-
ehealth services subsidized by health insurance reim-
bursements. Specifically, patients with certain chronic
diseases can benefit from noninvasive monitoring de-
vices such as those evaluating blood pressure, blood glu-
cose levels, and cardiac activity [21]. However, designing
a telehealth system with professional health care staff to
operate these noninvasive devices is complicated and
costly. To prevent overburdening the telehealth system
before insurers implement a telehealth reimbursement
policy, researchers must identify the best qualified pa-
tients in receiving telehealth services to ensure that the
neediest patients are assisted, instead of simply those
who able can pay for them.

Although previous research showed that telehealth ser-
vices can reduce the misuse of resources and urban—rural
disparities [2], most healthcare insurers do not include tel-
ehealth services in their health insurance schemes [6, 12].
Therefore, no target variable exists for the classification
approaches to learn from or train with. Thus, the problem
of identifying the potential recipients of telehealth services
when introducing telehealth services into health welfare
or health insurance schemes becomes an unsupervised
classification problem without a target variable.

The first challenge of this study is to generate the target
variable for the unsupervised telehealth classification prob-
lem. The type of target variable (interval, ordinal, or nom-
inal) determines which data-mining techniques can be
used. In classifying patients into recipients and nonrecipi-
ents, the target variable is generally the patient’s status (e.g.,
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unqualified or qualified). The target variable can also be de-
fined according to different classes in matching their vari-
ous meanings. For example, we can classify all patients into
several classes, such as “necessary”, “maybe necessary in the
long term”, and “unnecessary”. However, having many clas-
ses, leads to frequent misclassification, because the indi-
viduality of each class becomes diluted, which results in
misclassification for similar classes. This condition also can
lead to an overfitting problem caused by the excess number
of predictor variables for a multiclass target variable but in-
sufficient data points. Consequently, this study limits the
number of target variable’s classes into two as binary. Thus,
the target variable can be transformed into a 0/1 code and
the telehealth service classification problem can be applied
easily in many data-mining techniques, including decision
trees and logistic regression.

The second challenge of this study involves generating
the required information from the existing attributes for
the insurance providers to determine whether the applicant
is a suitable recipient of telehealth services. In a telehealth
classification problem, the attributes are the patients’ per-
sonal and outpatient information they provided when they
submit telehealth service applications. However, applying
these attributes directly from the data set to a data classifi-
cation technique may be inappropriate. For example, the
decision tree—building algorithm does not handle numeric
attributes uniformly. When applying the numeric attributes
to generate the decision tree, numeric attributes may be
used more than once with different thresholds. Some im-
portant attributes are excluded in the data set; thus, this at-
tributed need to be derived from other attributes. For
example, the patient’s traveling distance or transportation
time to the hospital is generally not included in the health-
care data set. Thus, these data need to be generated. Solv-
ing this challenge can ensure that insurance providers
receive the patients’ detailed medical-related data that can
be used to generate the telehealth service classifier and ap-
plied directly in the classifier in determining the status of
an applicant.

Third challenge is building a classifier to solve the prob-
lem of identifying candidates in receiving health insurance
reimbursement for telehealth services. In this study, we
choose decision trees in generating the classifier because
the rules they generate are simple to interpret, such that
the results can be easily understood for both medical pro-
fessionals and patients. Constructing a decision tree—based
classifier involves three main steps, namely, variable selec-
tion, node splitting, and tree pruning [17]. Generally, re-
searchers use entropy and information gains for the first
step and then obtain the local maximum information by
splitting the data according to a variable. Given that this
method requires the data to be categorical, researchers have
developed various methods for interval data, such as ID3,
C4.5 and CART. Building a decision tree—based classifier
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also involves applying appropriate feature selection and fea-
ture extraction to enhance classification performance. Fea-
ture selection is a process of selecting representative
attributes; meanwhile, feature extraction transforms the ori-
ginal attributes to some other forms in decreasing the di-
mensions of the data set. For the current study, we must
determine which node-splitting approach together with fea-
ture selection and feature extraction, is most suitable to
build the classifier. After splitting nodes to generate a tree,
the next step is pruning the tree if it has extremely many
levels or nodes in avoiding an overfitting problem. Two
pruning approaches have been developed, as follows [14];
pre-pruning stops the tree from growing before the entire
training data set is classified and post-pruning prunes the
tree after the decision tree is finished. For the current study,
we must determine which pruning approach is most suit-
able to build the classifier.

Finally, a fourth challenge is selecting a validation
method. Validation is the process of assessing how well
the classification models perform against the validation
data (real data) by verifying whether the models’ mis-
classification rates meet the established requirements.
The validation techniques consider the probability of
the worst-case scenario, wherein a model’s complexity
is high. For example, the widely used k-fold validation
technique divides a data set into k subsets and takes k
— 1 subsets as the training data, with the remainder as
the validation data set. Then, the model is trained for k
times, and each iteration uses the subset i one at a time.
However, the problem considered herein has a rela-
tively small training data set for the experts to classify
the patients as candidates in receiving telehealth ser-
vices. Given that the training data set is extremely
small, we will not split (k-fold validation) or cross-
validate the training set in the validation step. We need
to develop a new validation method suitable for an un-
supervised classification problem with an extremely
small training set and an exceedingly large test data set.

In summary, this study aims to solve the unsupervised
classification problem of identifying the patients who are
the best candidates in receiving telehealth services. Four
challenges, such as (1) generating the target variable, (2)
generating the needed information from the existing at-
tributes, (3) building a classifier, and (4), selecting a val-
idation method, are addressed.

Methods

To classify candidates to receive telehealth services through
health insurance reimbursements, we propose a new deci-
sion tree approach, that is, heuristic decision tree telehealth
classification approach (HDTTCA), which consists of three
major steps, namely, (1) data analysis and preprocessing,
(2) decision tree model building, and (3) prediction and ex-
planation, as shown in Fig. 1.
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As mentioned before, four challenges are addressed in
HDTTCA: step 1 tackles challenges 1, 2 and 4, while step
2 tackles challenges 3 and 4. Finally, in step 3, HDTTCA
predicts and explains incoming data by using the decision
tree classification model that was chosen previously in
step 2. In other words, after building the decision tree
model, we use this model to predict the applicability of
telehealth services. In the following subsection, we explain
the details of steps 1 and 2 and then clarify the time com-
plexity of HDTTCA.

Step 1: data analysis and preprocessing

As discussed previously, the target variable and some
important attributes are excluded in the original data
set. Therefore, HDTTCA first needs to derive some at-
tributes from the current data set and then used them in
determining the value of target variable. To validate the
performance of the decision tree classification model,
HDTTCA divides the data set into several subsets.

Step 1.1 generating derivative attributes

Given that the raw data containing the critical attributes
are often collected from different sources, these data
should be integrated into a single data set first. We focus
on the two primary actors involved in healthcare activity,
namely, patients and hospitals. The patient-related data
sets describe the information about those who have seen
physicians and contain two types of information, namely,
basic information (patients’ important attributes, includ-
ing gender, age, address, and health history) and clinical
information (all medical activities the patients received,
including medical treatments and physician visits). We
retain only the important attributes of patient-related
data sets for telehealth services, such as the hospital
where a patient seeks treatment, the code for the inter-
national classification of diseases, and the number of
days of prescription. The hospital-related data sets de-
scribe the information about hospitals that patients visit
to see their physicians. For our purposes, we only need
the hospital’s location and size.

To reduce the numbers of age categories and balance the
percentages among them, we use an attribute, that is, age
group (Fyg), to represent the age of <30 years as young, 30
years < age < 70 years as middle-aged and age of >70 years
as elderly. Similarly, we transcode the monthly insurance
amount into an attribute, that is, insurance level (Fj),
which is categorized as low, middle, and high with the sug-
gested percentages of 20, 60 and 20%, respectively. We also
mark the situations when patients are not required to pay
the copayments with an attribute, that is, copayment ex-
emptions (Fcgpg) mark as Y and N.

We summarize the number of times in a year that
each patient visits a hospital (outpatient) or is hospital-
ized (inpatient) into op_time and ip_time, respectively.
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We use an attribute, that is, outpatient frequency (F,,)
to categorized op_time into none when its value is 0,
low for 1<op_time <12, middle for 13 < op_time < 36,
and high when its value >37. We also denote an attri-
bute, that is, inpatient frequency (F;,), as 0 for ip_time =
0, 1 for ip_time=1, 2 for ip_time =2, and 3+ for ip_
time > 3.

Some diseases are inapplicable for telehealth services
(e.g, a car accident victim that went to the emergency
room for treatment for the injury and then rests in chronic
care for rehabilitation). Therefore, we differentiate the total
number of days that a patient uses an emergency bed (EB
day) and a chronic bed (CB day). We use an attribute, that
is, chronic bed rate (Fcpg), which is the number of CB days
divided by EB day + CB day, to distinguish those whose
symptoms cannot be helped by telehealth services and
eliminate the patients with Fcpr=0. We also summarize
the number of drug prescription days as drug day and the
total amount of the medical fees as total amount.

In previous studies, the critical influence factors for
adopting telehealth services include the patient’s traveling
distance or transportation time to the hospital, health sta-
tus, and financial status [5, 6, 20]. However, these attri-
butes are not recorded directly in the data sets; thus, they
need to be derived from existing attributes. Given that tel-
ehealth services are more beneficial for patients who live
further away from the hospitals, transportation time
should be determined when a patient travels from home
to the hospital. We can generate the distance of a patient
travelling from home to hospital [1], that is, distance
(Fpis), by combining the zip codes of the hospital location
and the patient’s residence location and the assistance of
Google Maps. We use the great-circle distance to estimate
the shortest distance between two points on the surface of
a sphere, which is calculated as follows:

Fpis =1 cos [ sin¢, x sin ¢, + cos ¢,

X €os ¢, X cos| Ay — Az|] km

where (¢, A1) and (¢, A») denote the latitudes and lon-
gitudes of points 1 and 2 (in radians), respectively; and r
is the mean earth radius (approximately 6371 km). For
example, the longitude and latitude of the zip codes 100
and 700 are (121.5199, 25.0324) and (120.1929,
22.99594), respectively. Therefore, the distance between
the two points is calculated as follows:

Fpis = 6371 x cos™'[ sin(25.03247/180)
x sin(22.9959m/180) + cos(25.03241/180)
x c08(22.99591/180) x cos(121.5199 — 120.1929)m/180]
= 263.5161 km

Telehealth services are beneficial for the patients with
chronic diseases because the administration period is > 7
days. We create a special attribute, that is, drug duration
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Fig. 1 Flow Chart of HDTTCA
A

(Fpp) to record whether a drug is administered for an ex-
tended period of time. We use the attribute economic pri-
ority (Fg), to distinguish patients with special conditions,
such as low income or disability. Telehealth services are
mostly needed by patients living in rural areas, even if their
traveling distances to the hospitals are shorter than those of
the other patients. Given that remote area is undefined, we
use an attribute, that is, remoteness (Fg), to distinguish pa-
tients residing in rural areas by changing their addresses.
As mentioned previously, telehealth equipment can
monitor only some physiological values, such as blood pres-
sure, blood glucose level, and cardiac activity, at present
[21]. Thus, telehealth equipment is mostly useful for target
diseases, such as diabetes, hypertension, and hyperlipid-
emia. We highlight the disease codes in a special attribute,
that is, target disease (Fzp), with Y indicating suitability and
N indicating unsuitability for telehealth services, respect-
ively. Another way to mark the potential telehealth users
is differentiating the treatment that a patient receives. We
create an attribute, that is, target treatment (Fr7), to rec-
ord the specific treatments for diabetes, hypertension, and

Table 1 Attributes Used to Consult with the Experts

hyperlipidemia symptoms, with telehealth-applicable as A,
other chronic diseases as B, and nonchronic treatment as
N. For special cases that do not fit in the preceding cat-
egories, we create an attribute, that is, Reim_Spe (Fs), to
record these special telehealth applicable cases, with ap-
plicable denoted as Y and nontelehealth-applicable as N.
Table 1 lists the attributes used to consult with the experts
and generate the decision tree for each expert in the fol-
lowing discussion.

The decision tree—building algorithm does not handle nu-
meric attributes uniformly. When applying these attributes
to generate the final decision tree, numeric attributes may
be used more than once with different thresholds, and these
numerical attributes should be transferred to categorical
ones. First, for the numeric attributes that are already con-
verted (e.g., age group), we remove the numeric attributes.
Second, we can use mean and standard deviation to com-
pute the thresholds and categorize the attributes (e.g., age).
Table 2 presents the formula to convert numeric attributes
into categorical ones. For example, distance is numeric;
hence, we convert it into a categorical attribute Fp; ¢ by

Attributes Data Type Attributes Data Type
Insurance Amount (Fips_ame) numeric Gender category
Age numeric Reim_Spe (Fgs) category
outpatient frequency (Fyp) category Economic Priority (Feco) category
inpatient frequency (Fj,) category Age Group (Fage) category
No. of outpatient times (op_time) numeric Insurance Level (F) category
No. of inpatient times (ip_time) numeric Drug Duration (Fpp) category
No. of days in an emergency bed (EB day) numeric Chronic Bed Rate (Fcgg) numeric
No. of days in a chronic bed (CB day) numeric Target Disease (Frp) category
No. of drug prescription days (drug day) numeric Copayment Exemption Mark (Fcep) category
Remoteness (Fr) category Distance (Fpys) numeric
the amount of medical fees (Total amount) numeric Target Treatment (Fy) category
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Table 2 Conversion Formula for Numeric Attributes in the Decision Tree Algorithm

Attribute Conversion Formula

Fins_amt_c IF(Fins_ame < mean, O, IF(Fjns_am: < mean + standard deviation, 1, 2))
op_time_C IF(op_time < mean, 0, IF(op_time < mean + standard deviation, 1, 2))
ip_time_C IF(ip_time < mean, 0, 1)

EB day_C IF(EB day < mean, O, 1)

CB day_C IF(CB day < mean, 0, 1)

drug day_C IF(drug day < mean, 0, IF(drug day < mean + standard deviation, 1, 2))

Total amount_C
Fesr_c

F Dis_C

IF(Total amount < mean, 0, IF(Total amount < mean + standard deviation, 1, 2))
IF(Fcgr < mean, 0, 1)

IF(Fpis < mean, 0, IF(Fp;s < mean + standard deviation, 1, 2))

using the formula in Table 2. Then, the converted attributes
together with the categorical attributes in Table 1 are used
to build the final decision tree classifier.

Step 1.2 target variable generation

This study aims in classifying potential chronic patients
who are suitable to receive telehealth services subsidized by
health insurance reimbursements. This target variable does
not exist in most healthcare data set. Thus, HDTTCA gen-
erates the target variable, that is, adoptability first. This ap-
proach involves asking experts to assign a value for the
variable. However, because the data set is extremely large,
HDTTCA samples a comparatively small data set as the
training data set for experts’ opinions. To solve the problem
of this study, we interview three experts in the telehealth-
related fields (i.e., a physician, a social worker, and a man-
ager of a care centers) in identifying the target variable, that
is, adoptability (labeling the adoptability Y or N for each
record) in the sampled data. Then, the experts reveal the
criteria and rules they used in their decisions during the
interview by showing all the attributes for all records in the
sampled data in Table 2.

The experts label only a comparatively small data set.
Therefore, HDTTCA generates a decision tree for each
expert independently after collecting their opinions. The
possible values of the target variable are “yes”, “no”, or
“in consideration”. Given the importance of telehealth
services in monitoring the physiological values and elim-
inating the urban—rural gap and socioeconomic gaps, we
combine “no” and “in consideration” into one group.
HDTTCA uses the attributes in Table 2 to generate the
decision tree for each expert independently. Then, each
decision tree is used to determine the value of the target
variable for the entire data set. However, because expert

Table 3 Different Classification Results

opinions may not be consistent in some records,
HDTTCA integrates the outcomes of each record by
using the following rules: adoptability =Y if more than
or equal to half of the experts labeled it as Y and adopt-
ability = N if less than half of the experts labeled it as Y.

Step 1.3 data sampling and partitioning

Although patients suffering from chronic diabetes, hyper-
tension, and heart diseases increase, our potential target
population is still comparatively rare, accounting for 10%
or less of the total population. These imbalance character-
istic may reduce the predictability of a decision tree
model; over- and undersampling are helpful techniques to
overcome this problem. Oversampling resamples the
existing minority data with slight modifications to be close
to the proportion of majority, whereas undersampling
abandons some existing majority data and keep all minor-
ity data. These techniques balance the data set distribu-
tion. We also adopt stratified sampling to increase the
proportion of our target.

After sampling, we divided the data sets into training
and validating subsets. We use the former to build the
classification model and the latter in validating the overfit-
ting problem and compare the prediction rate of different
models. The overfitting problem occurs when the model
used extremely many attributes to generate a decision tree
and fit the data with extremely few objects. We may find
overfitting clues in the model prediction step. If the deci-
sion tree’s accuracy is high in the training data set (i.e.,
due to the classifier’s objective in maximizing accuracy)
but comparatively low in the validation data set, then an
overfitting problem occurs. Therefore, we need to decide
the proportion of training and validation data sets care-
fully. Given that HDTTCA samples a comparatively small

Predicted / Actual
Predicted as Positive (7, = 1)
Predicted as Negative (7, = 0)

Actual Positive (y;=1)
True Positive (TP)
False Negative (FN)

Actual Negative (y;=0)
False Positive (FP)
True Negative (TN)
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Table 4 Distribution of the Attributes Used in Oversampling

Attributes Distribution of each class
Remoteness (Fp) 1 2 3
90.59% 7.32% 2.1%
Economic Priority (Fzeo) N Y
97.6% 2.4%
Age Group (Fage) Elder Middle-aged ~ Young
9.72% 79.86% 1042%
Insurance Level (F;) High Middle Low
2474%  55.86% 19.4%
Drug Duration (Fpp) N Y
87.76% 12.24%
Chronic Bed Rate (Feg) =0 >0
99.84%  0.16%
Target Disease (Frp) N Y
91.38% 8.62%
Target Treatment (Fr7) N Y
99.998%  0.002%
Copayment Exemption Mark (Fegy) N Y
9528%  4.72%

data set similar to the training data set for experts’ opin-
ions, we use all the experts’ opinions as the training data
set and randomly took additional samples from the
remaining data set as the validation data sets.

Step 2: decision tree model building

In this step, we build a decision tree classifier, on the basis
of the training data set and validate the classifier by using
the validation data set. However, the telehealth service
classification problem we consider the involved > 20 attri-
butes, which are not all essential to identify the character-
istics of the target variable. Correlations among the
attributes can also cause multicollinearity and inaccuracy
in some data-mining models. Thus, HDTTCA uses an at-
tribute selection mechanism to choose the most discrim-
inative attributes when building a decision tree classifier.

Step 2.1 attribute selection

Before detailing the construction of a classifier, we define
T as the data set, which was constructed by m attributes
and had # records, x;, xs, ..., and x,. The target variable,

Table 5 Distribution of Gender and Age Group of All Patients in
the entire Data Set

Attributes Age Group

Gender Elder Middle-aged Young Percentage
Female 4.45% 38.87% 5.82% 49.14%
Male 5.28% 40.99% 4.59% 50.86%
Percentage 9.72% 79.86% 10.42%
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Table 6 Distribution of Gender and Age Group of All Patients in
the Sample Data Set

Attributes Age Group

Gender Elder Middle-aged Young Percentage
Female 10% 28% 5.5% 43.5%
Male 8% 40.5% 8% 56.5%
Percentage 18% 68.5% 13.5%

which was denoted as y;=1{0, 1} where 1<i<mn, was
“adoptability for telehealth service”. Therefore, a record
can be expressed as x; = [%;7, X;2, - Xip V5] and T = {x; |
1 < i < n}. Decision tree algorithms classify records by con-
junctive rules (e.g. age group =elder and distance >60).
Several decision tree algorithms, such as ID3 and C4.5,
apply information theory to separate data by iteratively
calculating the entropy, which was denoted as H(7) and
the information gain, which was denoted as IG(T, a), from
splitting data on the basis of the attribute a. Entropy,
which was denoted as H(T), is the expected value of the
information contained and can be defined as H(T)=
-Zp(b)log(b), where T is the training data set, Y is the tar-
get variable in T, b is a classified value in ¥, and p(b) is the
probability that an object in T is classified as b.

Information gain is the amount of uncertainty reduced
due to the split, which can be defined as IG(T, a) = H(T) —
Yp(a)H(a), where A is an attribute for which a split has oc-
curred, p(a) is the probability that an object in T exhibits
attribute A = a, and H(a) is the entropy of the subset of T,
where attribute A =a. The decision tree selects the locally
best attribute (i.e., highest information gain) as a splitting
criterion. After calculating the information gain of each at-
tribute, the decision tree algorithm selects the attribute with
the maximum information gain to be a node, which splits
the data set into two or more subsets. The process itera-
tively proceeds until a full decision tree is built.

Step 2.2 decision tree classifier building

A well-fitted decision tree model can predict the training
data set with the least misclassification cost or the highest
accuracy. The advantages of decision trees over other clas-
sification algorithms are their coherent and consistent
rules from the tree root to the leaves and the ease of inter-
pretation. We use J48 in Weka [8], which is an open-
source Java implementation of C4.5, as our decision tree—

Table 7 Results of Physician’s Decision Tree on Training Data

Classified as
Actual Y N
Y 14 9
3 174
Sensitivity: Specificity: Precision: Accuracy:
60.9% 98.31% 82.35% 94%
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Fig. 2 Physician’s Decision Tree
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building algorithm. The C4.5 approach, which is used to
calculate the difference in entropies among variables, is
based upon the information gain of each attribute. The al-
gorithm identified the attribute with the highest normalized
information gain, which we choose as the splitting node.
When using J48 in Weka [8], we must determine two
parameters, namely, the confidence factor and the mini-
mum number of objects per leaf. The smaller the confi-
dence factor is, the more pruning the algorithm will do.
However, pruning reduces the accuracy of the training
data while generally increasing the accuracy of unseen
data. We use the confidence factor and the minimum
number of objects per leaf in mitigating overfitting,
where the decision tree will achieve perfect accuracy on
training data, but the resulting decision tree is extremely
specific that it does not apply to anything other than the
training data. In general, if we reduce the confidence fac-
tor or increase the minimum numbers of objects per
leaf, then the accuracy of the training set will decrease.
In Weka [8], J48 offers two settings to improve the esti-
mation of sensitivity and accuracy, namely, training/test
split and cross validation. However, the telehealth service
classification problem needs input from human experts
for the target variable, which leads to a small training data
set and a large independent testing data set. In this case,
neither option is appropriate for HDTTCA to adopt. We

Table 8 Results of Social Worker's Decision Tree on Training

Data
Classified as
Actual Y N
Y 16 4
N 4 176
Sensitivity: Specificity: Precision: Accuracy:
80% 97.78% 80% 96%

use different confidence factor levels and the minimum
number of objects per leaf to discover the best location
for the pruning confidence factor and the minimum num-
ber of objects per leaf, in which it prunes enough to make
the learned decision tree sufficiently accurate on test data
but does not sacrifice excess training data accuracy. The
location where this spot of the pruning confidence factor
and the minimum number of objects per leaf locate will
depend upon the problem, and the only way to determine
them reliably is performing an experiment.

An appropriate model should be able to predict future
data sets consistently and effectively. Different perspec-
tives and criteria are available to identify the performance
across different settings of the confidence factor and the
minimum number of objects per leaf. The validation tech-
niques in J48 in Weka can assess the performances of
various settings. Considering that the training data set is
small, HDTTCA will not split or cross-validate the train-
ing set. Instead, HDTTCA asks J48 in Weka to randomly
produce 30 data sets from the test data set and apply val-
idation and evaluation on these data sets. If the error be-
tween the training and validation data is high, then
overfitting or underfitting needs to be considered.

Model assessment

Then, we compared the final decision tree results against
the results obtained from a logistic regression model
that was constructed by Weka [8]. We first compute the
Spearman coefficients of correlation (r;) among these at-
tributes and eliminate the coefficient with r,>.7 to avoid
the multicollinearity problem. Then, we perform step-
wise logistic regression to select the significant attributes
from the remaining attributes. We remove unrelated at-
tributes according to coefficient tests or p-value greater
than 5%, until all remaining attributes are significant.



Chern et al. BMC Medical Informatics and Decision Making

(2019) 19:104

Page 9 of 15

Remoteness

Remoteness

Copayment
Exemption
Mark

[ Applicability = Y| [ Applicability =N |

[ Applicability =Y |

Applicability = N

Fig. 3 Social Worker's Decision Tree

Finally, the predictive capability of the decision tree is
a potential issue. HDTTCA compares the prediction,
which is denoted as 7, with the actual result of the target
variable, y to test for predictive capability. Table 3 dem-
onstrates different classification results. Some common
measures in selecting the best decision tree classifier are
the misclassification rate, which is denoted as Err(7),
and the probability of being correct, which is denoted as
Accuracy(T). Here, Err(T) is computed as (FP+ FN) /
(FP+ TN + TP + FN), and Accuracy(T) is computed as 1
— Err(T) or (TP+ TN) / (FP+ TN + TP + FN), where FP
is the false positive count, FN indicates the false negative
count, TP is the true positive count, and 7N reflects the
true negative count (Table 3).

Another important criterion is sensitivity or true
positive rate, which is denoted as Sensitivity(T), that
can be computed as TP/(TP + FN), such that the de-
nominator represents actual positive cases. Sensitivity
can identify the positive case of a model correctly.
Hence, high sensitivity implies that few Type-II errors
have occurred when applying the model. Low sensitivity
suggests a poor performance in identifying the wrong
patients for telehealth services. Specificity, which is
computed as Specificity(T) = TN/(FP+ TN)=1 - FP/
(FP+ TN), is the true negative rate and indicated how

Table 9 Results of Manager's Decision Tree on Training Data

Classified as
Actual Y N
Y 18 4
N 1 177
Sensitivity: Specificity: Precision: Accuracy:
81.81% 99.44% 94.74% 97.5%

accurately our model will identify true negatives. Preci-
sion, which is computed as Precision(T) = TP/(TP + FP)
=1 — FP/(TP + FP), is the exactness or percentage of
tuples that the classifier labeled as positive that are ac-
tually positive. Precision denoted the accuracy of our
model in identifying true positives.

In general, the misclassification rate or Accuracy(T) eval-
uates classification models. However, Accuracy(T) cannot
distinguish type-I/type-II error. For the telehealth service
classification problem in this study, type-II error is crucial.
Patients can suffer extensively if the model misidentified an
eligible patient as ineligible. Therefore, sensitivity is the
first criterion that we will apply in the evaluation process,
followed by accuracy, specificity and precision.

Results

Real-world health insurance research data set

We acquired a data set from the NHIRD provided by
the NHIA, Ministry of Health and Welfare in Taiwan,
which contains data from 1996, when Taiwan first in-
troduced NHI, to 2012 in demonstrating the applicabil-
ity of HDTTCA. For calculative convenience, we use
the 2012 data as our research scope, which consists of
55,389 distinct hospitals and 653,209 distinct patients
with 15,882,153 outpatient and 135,775 inpatient re-
cords. After HDTTCA’s generating derivative attribute
step, the size of the data set decreases to approximately
100 MB compared with the 4.45 GB size of the original
data set. This study (REC no: 20141HS007) has been
approved by the Research Ethics Committee of Na-
tional Taiwan University and classified as exempt on
November 14, 2014 in accordance with the Social and
Behavioral Research Ethical Principles and Regulation
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Fig. 4 Manager's Decision Tree

of National Taiwan University and governmental laws
and regulation of Taiwan.

After Step 1.1, HDTTCA has derived 22 attributes
(Table 1). Table 4 shows the distributions of the nine
telehealth-related attributes. Approximately 91% of the
patients live in nonremote area, and 98% of the patients
are not socioeconomically disadvantaged, which indi-
cates that they possessed considerable access to medical
resources. Over 91% of the patients have the target dis-
eases that are suitable for telehealth services.

To ensure that the sampling training data set is closely
representative of the actual patients’ distribution, we use
stratified sampling on the basis of two basic attributes, that
is, gender and age group. However, the nature of our prob-
lem indicated possible unbalanced distribution of the tar-
get variable is. Therefore, sufficient telehealth-applicable
patients should be sampled into the training data set.
Therefore, we adopt the oversampling technique on the
basis of telehealth-related attributes. We obtain 200 sam-
ples out of 653,209 records. Table 5 shows the patients’ dis-
tributions of gender and age groups, and Table 6 shows the
distribution in the sample.

Given that, elderly is more likely to be eligible for tele-
health services, the sample size of elderly patients is two-
fold larger than those of other samples. HDTTCA also
used other attributes, such as remoteness and economic

Table 10 Distributions of Adoptability in Different Versions of
the Sample Data Set

Adoptability Expert 1 Expert 2 Expert 3 Final Version
Applicable or "Y" 23 20 22 14
Not Applicable or “N" 177 180 178 186

priority (Table 4) to perform oversampling. The sample
contained more male patients than female ones because
the target diseases are more common in male population
than in female ones.

Generating a decision tree for each expert and final
target variable

In this part, we describe our interviews with three experts
in telehealth-related fields, namely, a physician in a medical
center as Expert 1, a social worker in a remote area as Ex-
pert 2, and a manager in a long-term care center as Expert
3, to identify the target variable of adoptability in the sam-
ple data set. During each interview, we first spend 10 min
to introduce our research objective and gave each expert an
outline of the data set. Afterward, each expert used 30 min
to label the adoptability of each record with Y or N. Finally,
the experts explained the criteria they used to make their
decisions. Then, we use adoptability as the criteria from
each expert to generate the decision tree. Given that the
sample size of the training data set is only 200 records, we
set the minimum number of records per leaf to be 1, which
indicates that it contained 0.5% of the data set. Then, using
J48 in Weka as the decision tree-building algorithm, we
build the decision tree for each expert and discuss the per-
formance and the rules of each decision tree. Finally, we
generate the final target variable by using these decision
trees for the testing data set.

Expert 1 focuses on the clinical record, such as the target
diseases, CB days and the frequency of inpatient admission.
Therefore, the first few branches in the decision tree are all
related to the clinical attributes. The physician also indi-
cates that telehealth services can reduce the time in the
hospital after the equipment detected abnormal values. The
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Tree Sensitivity  ANOVA Accuracy ANOVA Specificity ANOVA Precision  ANOVA

(0.5, 10r2) 7562 F=8773.99 9536 F=17067.17 9656 F=1723280 5863 F=13619.86

(025 1or  .97% 9874 9879 8380

2)

(0.75, 2) 9877 p_value = 7.8999E- 9626 _value = 2.282E~ 9610 p_value = 1.5~ 6176 p_value =4.0981E-
075, 1) 8836 108 9442 120 9481 120 5201 116

service provided a standard value for patients to reduce un-
expected outpatient times.

Table 7 shows the classification outcome and statistics
of Expert 1’s version. Figure 2 shows the full decision
tree of Expert 1’s version, which possessed eight leaves
with a tree size of 14 and a depth of four levels. For ex-
ample, one rule stated that if a middle-aged patient has
a target disease has been hospitalized chronically in bed
for > 2 days and lives > 14.91 km away from the hospital,
then the patient is qualified for telehealth services reim-
bursed by the medical insurance policy.

Expert 2 focuses on welfare-related attributes, such as
copayment exemptions and patients’ residence. Expert 2
thinks that telehealth services can reduce the urban-
rural gap and improve the life of rural residents.

Table 8 shows the classification outcome and statistics
of Expert 2’s version. Figure 3 shows the full decision tree,
which consisted of 9 leaves with a tree size of 17 and a
depth of 4 levels. For example, one rule states that if a
copayment-exempted patient that lives in a rural area does
not have target diseases and has a smaller than or equal to
43.88 km traveling distance between his residence and
hospital, then the patient is unqualified for telehealth ser-
vice reimbursed by the medical insurance policy.

Expert 3 emphasizes convenience and accessibility of
healthcare for patients and also encourages elderly pa-
tients to use telehealth equipment in her long-term care
center frequently. Therefore, the important attributes for
Expert 3 are distance and age.

Table 9 shows the classification outcome and statistics
of Expert 3’s version, and Fig. 4 shows her full decision
tree, which contains 11 leaves with a tree size of 20 and a
depth of six levels. For example, one rule states that if a
patient lives in a rural area, has more than 4 days of drug
prescription, has more than 18days of outpatient time,

Table 12 Results of the Final Version (0.75, 2) Decision Tree on
Training Data

Classified as
Actual Y N
Y 11 2
N 1 186
Sensitivity: Specificity: Precision: Accuracy:
91.17% 98.94% 84.62% 98.5%

and has a > 54.61-km traveling distance between his resi-
dence and hospital, then the patient is qualified for tele-
health service reimbursed by the medical insurance policy.

Considering that the opinions from the three experts
are inconsistent, we need to generate the final value of
the target variable for each record in the training data
set using the following rules: labeling adoptability as Y if
two or more experts indicate its eligibility and N if one
or no expert says that it is eligible. Table 10 shows the
outcome distribution in each expert’s version and the
final version.

For the testing data set, we generate the opinions of
each expert for each record by using the decision tree of
each expert generated in Figs. 2, 3 and 4. The three ex-
perts’ opinions are inconsistent, and we need to generate
the final value of each record in the testing data set by
using the same rules. After obtaining the target variable,
we are ready to create a decision tree of the final version.

Building the final version decision tree and logistic
regression model

Given that the HDTTCA samples a comparatively small
data set (200 patients) for experts’ opinions, HDTTCA used
all experts’ opinions as the training set and took 30 random
samples of 20,000 patients each from the remaining data
set as the validation data sets when training the decision
tree. When using J48 in Weka [8], two parameters, such as
the confidence factor and the minimum number of objects
per leaf, need to be determined. We use six different set-
tings of the confidence factor and the minimum number of
objects per leaf, (i.e, 0.25, 0.5, and 0.75) versus (1, 2) in dis-
covering where it prunes enough to make the learned deci-
sion tree sufficiently accurate on testing the data but does
not sacrifice excess accuracy on the training data.

In total, J48 in Weka [8] generates six trees for the six
different settings of the confidence factor and the mini-
mum number of objects per leaf. However, tree (0.25, 1)
is the same as tree (0.25, 2) and tree (0.5, 1) is the same
as tree (0.5, 2). Therefore, we compare the performance
metrics of the 30 testing data sets for the four trees by
using ANOVA, as shown in Table 11. The ANOVA re-
sults reject all null hypotheses for the four metrics. We
also perform a pairwise f-test to compare the top two
trees, that is, (.25, 1 or 2) and (.75, 2), and the ¢ statistics
and p-value for the sensitivity metric are 19.0614 and
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Fig. 5 The Final Version

3.01E-18, respectively, which rejects the null hypothesis.
Thus, we can select the best trees by using the sensitivity
criterion, which is tree (.75, 2).

Table 12 shows the classification outcome and statis-
tics of the final tree version (.75, 2) and Fig. 5 shows the
full decision tree, which included 9 leaves with a tree
size of 15 and a depth of 4 levels. For example, one rule
states that if a patient lives in a rural area, has a traveling
distance greater than the population mean (i.e., 21 km),
has no target diseases, and has a middle-level insurance
policy, then the patient is unqualified for telehealth ser-
vice reimbursed by the medical insurance policy.

In conclusion, three main dimensions influenced the de-
cision about using telehealth services. First, patients’ clinical
status is important because of the limitation of telehealth
equipment. Patients with diseases that do not need to be
monitored by physiological values are not recommended
for telehealth services. Second, telehealth services play im-
portant roles for patients who live in inconvenient areas or

Table 13 Logistic Regression Model

who have long travel times to healthcare facilities. Third,
telehealth service benefits elderly and low socioeconomic
level patients. With telehealth service subsidized by insur-
ance, these patients can have a healthy quality of life.

After HDTTCA produces the final version of decision
tree, the rules can be used to assign the values of the target
variables in the entire NHIRD. Our data indicate that 3.56%
(23,262 out of 653,209) of the patients are eligible for tele-
health services in 2012. The following step is setting up dif-
ferent cases of experiments to compare the results of
HDTTCA with those of a logistic regression model.

Then, we then construct the logistic regression model
by Weka [8] as the baseline comparison model to the
final decision tree. Before generating the logistic regres-
sion model, we need to determine the subset of attri-
butes in Tables 1 and 2 that are suitable for the model.
We compute the r, among these attributes and eliminate
the coefficient with r;>.7 to avoid the multicollinearity
problem. We perform stepwise logistic regression to

Coefficients Estimate Std. Error z value Pr(>fz)) Signif. codes
(Intercept) -17.949 46122 -3.892 9.95E-05 xxx
Distance_C (Fys_o) 3.033 9792 3.098 001952 o
Remoteness (Fr) 2.5578 1.1479 2228 025866 *

Age Group (Fage) 3.5081 1.2511 2.804 005048 **
Copayment Exemption Mark (Fcen) 3.8109 1.5376 2479 013192 *

Target Disease (Frp) 8.0175 22871 3.506 000456 e

Ps. Signif. codes: ***' for 0; “**' for 0.001; *' for 0.01
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Table 14 Logistic Regression Model on the Training Data

Classified as
Actual Y N
Y 10 2
N 4 184
Sensitivity: Specificity: Precision: Accuracy:
83.33% 97.87% 7143% 97.00%

select significant attributes from the remaining 13 attri-
butes. The final logistic regression model consists of
only 5 significant attributes (p-value >5%), as shown in
Table 13. The coefficients of the five attributes are all
positive, which indicates that the patients traveling a
long distance toward the hospital, living in remote areas
in an elderly age group, with copayment exemption
mark, and those with target diseases are likely to qualify
for the insurance reimbursements of telehealth services.
Table 14 shows the classification of the outcomes and
statistics of the final logistic regression model.

Discussion
This study proposes HDTTCA to determine the eligibility
for the insurance reimbursements of telehealth services.
After finding the feasible combinations of factors, models,
and corresponding parameters in the Method Section, we
conduct a series of experiments 30 times to compare the
HDTTCA results with the results of the logistic regression
by measuring their average performances and determining
which model addresses the telehealth patient classification
problem better. As mentioned in the Method section, four
important metrics including sensitivity, accuracy, specificity,
and precision, are used to compare the results. These met-
rics reflect the usability and accuracy of a model. We also
discuss the interpretability of the result as a crucial criterion
when applying different classification methods in practice.
Then, we then perform the experiments 30 times by
taking 30 random samples of 20,000 patients each from
the remaining data, and we measure their average per-
formances. We set the decision tree of HDTTCA and
the previously mentioned logistic regression model in
Weka [8], which automatically searches for the final

Table 15 Pairwise t-tests for Performance Metrics
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solution for each sample in the testing data set. To com-
pare the results of the two models, we conduct pairwise
t-tests between the results classified by the decision tree
of HDTTCA (Table 12) and those classified by the logis-
tic regression model (Table 13).

Given that this data set is unbalanced (only 3.56% of the
patients are eligible for the telehealth services), HDTTCA
result shows extremely high sensitivity, accuracy, and spe-
cificity (all > .95%) but low precision. The results in
Table 15 reveal the average performances, and corre-
sponding variances and p-values, that is, P (T < =r), of the
pairwise t-tests between the decision tree generated by
HDTTCA and the logistic regression model. In terms of
sensitivity, the decision tree generated by HDTTCA and
the logistic regression model are on the equal ground. In
terms of accuracy, specificity, and precision, the decision
tree generated by HDTTCA provides a better perform-
ance than that of the logistic regression model. The deci-
sion tree model generates a competitive performance and
provides clear, easily understandable rules by applying
HDTTCA. Hence, HDTTCA is a suitable choice in solv-
ing telehealth service classification problems.

Conclusion

In conclusion, this study has three contributions. The first
contribution is confirming that the use of decision trees is a
good approach in identifying the potential receivers of tele-
health services. A decision tree telehealth service classifier
can produce clear and understandable rules within ex-
tremely fast training time by applying HDTTCA. The sec-
ond contribution indicates that HDTTCA determines the
three most important dimensions of reimbursing patient
for telehealth services, namely, clinical records, conveni-
ence, and social-economic status. The third contribution is
proving that HDTTCA is essentially applicable on a real
data set from NHIRD in Taiwan.

Two matters need to be illustrated in this study. First,
the ethical question of denying some people access to a
service because it is not covered by insurance or they live
extremely near the hospital or service provider has not
been addressed. That limitation indicates that the univer-
sal healthcare coverage is not universal if some cannot ac-
cess it. Second, HDTTCA involves human judgment to

Metric Sensitivity Accuracy Specificity Precision

Model HDTTCA LR HDTTCA LR HDTTCA LR HDTTCA LR
Mean 9877 9875 9626 9451 9610 9424 6176 5219
Variance 9.2187E-06 6.4638E-06 1.6201E-06 3.2124E-06 2.1E-06 3.856E-06 00012 0001293
DF 29 29 29 29

t —.7327 —81.5205 —794559 —88.2711

P(T<=r) 2348 4.1444E-36 8.69E-36 4.16E-37
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determine the target variable. In the future, the actual
value of the target variable may be acquired from the
NHIRD if the policy of reimbursing patients for telehealth
services is implemented. We can compare the HDTTCA
results and the attributes of actual applicants and modify
the classifier rules. Future work can also focus on building
the utility model of users and in designing an appropriate
billing mechanism of telehealth services.
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