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Abstract

Background: Padua linear model is widely used for the risk assessment of venous thromboembolism (VTE), a
common but preventable complication for inpatients. However, genetic and environmental differences between
Western and Chinese population limit the validity of Padua model in Chinese patients. Medical records which
contain rich information about disease progression, are useful in mining new risk factors related to Chinese VTE
patients. Furthermore, machine learning (ML) methods provide new opportunities to build precise risk prediction
model by automatic selection of risk factors based on original medical records.

Methods: Medical records of 3,106 inpatients including 224 VTE patients were collected and various types of
ontologies were integrated to parse unstructured text. A workflow of ontology-based VTE risk prediction model,
that combines natural language processing (NLP) and machine learning (ML) technologies, was proposed. Firstly
ontology terms were extracted from medical records, then sorted according to their calculated weights. Next
importance of each term in the unit of section was evaluated and finally a ML model was built based on a subset
of terms. Four ML methods were tested, and the best model was decided by comparing area under the receiver
operating characteristic curve (AUROC).

Results: Medical records were first split into different sections and subsequently, terms from each section were
sorted by their weights calculated by multiple types of information. Greedy selection algorithm was used to obtain
significant sections and terms. Top terms in each section were selected to construct patients’ distributed
representations by word embedding technique. Using top 300 terms of two important sections, namely the
‘Progress Note’ section and ‘Admitting Diagnosis’ section, the model showed relatively better predictive
performance. Then ML model which utilizes a subset of terms from two sections, about 110 terms, achieved the
best AUC score, of 0.973 ± 0.006, which was significantly better compared to the Padua’s performance of 0.791 ±
0.022. Terms found by the model showed their potential to help clinicians explore new risk factors.
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Conclusions: In this study, a new VTE risk assessment model based on ontologies extraction from raw medical
records is developed and its performance is verified on real clinical dataset. Results of selected terms can help
clinicians to discover meaningful risk factors.

Keywords: Medical record, Venous thromboembolism (VTE), Natural language processing (NLP), Risk assessment,
Machine learning (ML)

Background
As a common complication for inpatients, venous
thromboembolism (VTE) comprising pulmonary embolism
(PE) and deep venous thrombosis (DVT) is a preventable
cause of death. American guidelines has reported that hos-
pital admission is related to nearly 25% of all VTE patients
and 10% deaths of inpatients is caused by PE [1]. Prophy-
laxis against VTE can reduce mortality efficiently. However,
the pathogenesis of VTE is complex. Although VTE has
shown associations with many risk factors such as elder
age, obesity, cancer, immobility and inflammatory bowel
disease [2, 3], there isn’t an universal VTE risk assessment
method. American College of Chest Physicians recom-
mends the Padua model, but its performances was poor
when applied to Chinese inpatients in the Internal Depart-
ment [4]. VTE is closely related to ethnic background and
disease spectrum. However, Chinese differed from western
population in the disease risk assessment. Thus, it is essen-
tial to find the potential VTE risk factor and develop pre-
diction model specifically for Chinese inpatients.
Padua model is a traditional linear weighting approach,

which was proposed by a prospective cohort study in
the hospital in Italy. Risk factors include 11 features and
are assigned different weights shown in Table 1. Four
factors, including active malignant cancer/chemother-
apy, previous VTE, reduced mobility and thrombophilic
condition have three points. The weight of ‘recent
trauma/surgery’ is two points and the rest of the factors
are one point. During the assessment of a patient’s VTE

risk, points of patients’ risk factors are summed up. The
patient is classified as high risk when the Padua score ≥
4. It is trivial that the number of risk factors used by
Padua model is relatively limited. Some variables, such
as blood transfusion and mechanical ventilation, which
showed obvious difference between patients with or
without VTE in Chinese hospital, are not considered [5].
Analyzing Chinese VTE patients’ medical records in de-
tail may uncover new variables associated with VTE and
improve Padua model.
The rapid development of medical informatization and

electronic health record (EHR) system allows the accumu-
lation of increasing number of medical records. This pro-
vides the possibility of investigating diseases in more
elaborate and precise methods, compared to traditional
approaches with small sample size and limited variables.
Many researchers have studied relationships between vari-
ous diseases and risk factors using machine learning (ML)
and natural language processing (NLP) methods which
showed promising results. SF Weng, et al. [6] compared
predictive validities of multiple ML methods on cardiovas-
cular risk assessment, R Casanova, et al. [7] analyzed the
Alzheimer’s disease risk by regularized logistic regression,
and P Ferroni, et al. [8] trained the support vector ma-
chine for VTE risk prediction on cancer patients. How-
ever, methods from above studies are pre-designed and
limited, which hardly take full advantages of different
quantities of patient information in medical records. They
are also limited in discovering new knowledge such as
other potential variables associated with the disease. Re-
cently deep learning (DL) technology has succeeded in
analyzing medical images to diagnose skin cancer, detect
pulmonary nodule and classify diabetic retinopathy [9–11]
due to its advantages of capturing complex patterns in
data, and some DL models [12, 13] were also proposed to
combine medical ontologies to analyze high-dimensional
and heterogeneous medical records but their results lack
of interpretability. Although using attention mechanism in
Retain [14] and GRAM [15] helps to explain features’
weights in low layer, the effect of features on the target
disease remains unknown. In addition, training the DL
model usually needs large sample size, which is infeasible
for some diseases with low morbidity.
In order to help the clinicians to explore new candi-

date VTE risk factors and develop efficient prediction

Table 1 Padua risk assessment model
Risk Factors Score

Active malignant cancer/chemotherapy 3

Previous VTE 3

Reduced mobility 3

Thrombophilic condition 3

Recent trauma/surgery 2

Age > =70 1

Heart/respiratory failure 1

Acute myocardial infarction/ischemic stroke 1

Acute Infection/rheumatologic disorder 1

BMI > =30 kg/m2 1

Ongoing glucocorticoid treatment 1

The Padua score ≥ 4 is classified as high risk

Yang et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 4):151 Page 2 of 13



model with certain interpretability from medical records,
we propose an ontology-based approach which processes
the free-text in medical records carefully, automatically
evaluates importance of terms from ontologies and finally
constructs the model based on candidate terms. The work-
flow of ontology extraction and risk assessment model es-
tablishment was summarized in Fig. 1. Interested sections
in medical records are extracted automatically at first and
then terms of ontologies are enriched according to their
importance rankings within the text. Next significant text
sections are selected by comparing their predictive validity
using ML models. Finally, key terms are found by greedy
section/term selections and VTE risk assessment model is
built based on these terms. Results generated by the whole
workflow can inspire further medical studies.

Methods
Medical records from Chinese hospital
In this study medical records of 3106 inpatients were col-
lected from Peking Union Medical College Hospital
(PUMCH) and each patient had two documents, admission
note and progress note. Both documents were unstructured
and had lots of paragraphs consisting of free text. The ad-
mission note usually included 11 sections: chief complaint,
present history, previous history, personal history, family
history, obstetrical history, menstrual history, physical
examination, laboratory examination, admitting diagnosis
and physician’s signature, and the progress note had daily
description about the patient’s condition. A commonly situ-
ation in China [16] is that informatization systems which

store medical records, medication and diagnosis codes are
different and data cannot be shared and interchanged expe-
diently in PUMCH. Hence only unstructured text informa-
tion were downloaded and analyzed.
Inpatients were selected randomly based on their case

number admitted to the same department in the internal
medicine department of PUMCH from January 2014 to
June 2016. Among them, 224 VTE inpatients were
checked and Padua scores were calculated by the clini-
cians in previous study [5]. The inclusion criteria con-
sisted of patients over 18 years old and patients with a
hospital stay length ≥ 72 h. The exclusion criteria included
patients receiving anticoagulation treatment (except for
anticoagulation for the treatment of VTE diagnosed dur-
ing hospitalization). DVT was diagnosed by venography
or color Doppler ultrasonography. PE was diagnosed by
pulmonary angiography, computed tomographic pulmon-
ary arteriography, MRI or radionuclide lung ventilation-
perfusion scans (V/Q scans).

Ontology sources
In order to obtain comprehensive information of pa-
tients involving symptoms, diagnoses, drugs, operations
and so on, multiple kinds of ontologies were gathered,
including the Chinese versions of Medical subject head-
ings (MeSH) [17], Human Phenotype Ontology (HPO)
[18], SNOMED-CT [19] and ICD-10 [20]. The Chinese
HPO was downloaded from the website (http://www.chi-
nahpo.org) by applying to the Chinese Human Pheno-
type Ontology Consortium (CHPO). ICD-10 codes utilized

Fig. 1 The workflow of VTE prediction model construction from medical records
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in Chinese hospitals are translated and provided by Na-
tional Health Commission of the People’s Republic of
China. Chinese versions of SNOMED and Mesh (CMesh)
were given by Institute of Medical Information/Medical Li-
brary, CAMS & PUMC. A translated version of SNOMED-
CT by crowdsourcing approach was also included. After
preprocessing and removing duplicates, 37,111 ICD codes,
11,903 phenotypic abnormalities from HPO, 55,750 MeSH
words, 11,652 terms from SNOMED and 101,033 terms of
crowdsourcing SNOMED-CT were kept and merged as the
final ontology set with 156,918 unique terms.

Rule-based section extraction
The first step of workflow was parsing sections within
medical records. Due to the pattern that sections
started with specific titles and white space between
two sections, we utilized the regular expression to
capture the start position of one section. Considering
that some sections were removed by clinicians for
convenience and orders of them could be changed, a
greedy match algorithm was implemented to find the
title of section having the minimum distance with
current position iteratively. The text between two ti-
tles was regarded as a section related to the first title
and current position in the document was updated
after a section was recognized. One example of the
algorithm was shown in Fig. 2. For the admission
note, 8 sections were saved excluding the obstetrical
history, menstrual history and physician’s signature.
For the progress note, the daily objective descriptions
were split by the date.

Automatic ontology enrichment
With sections in medical records, we then searched for
terms in ontologies that existed in different sections.
Terms were sorted them according to their characteristics

and weights in documents in order to shrink the size of
term set. For each section, the term set was constructed
respectively and each section had two groups of term sets
based on non-VTE patients and VTE patients separately.
First sentence within a section was split via punctuation

and candidate words were parsed using word segmentation
tool, JIEBA (https://github.com/fxsjy/jieba), and then all
sentences from medical records of VTE and non-VTE pa-
tients were combined into one file. The corpus was 106.7
Mb with about 1.3 million sentences. The universal distrib-
uted representations of words were inferred by the word2-
vector algorithm [21] provided by the GENSIM python
package [22]. Words with frequencies less than 2 were
omitted and the window size for predicted word was set to
5. The continuous Skip-gram model was used and finally
each word was represented as a real number vector.
Terms which did not exist in candidate words were fil-

tered and four features were calculated for the remaining
terms,

1) Word frequency Fword: ontology occurance times in
specific section from all patients were counted and
average frequency was given by dividing the total
number of words in the section.

2) Document frequency Fdoc: The number of sections
containing the ontology and the frequency was
obtained by dividing the total number of the section
in all patients. One notable observation was that
sections with different dates in the progress note
belonged to the same kind of section.

3) Positive and negative times (Npos and Nneg): when
one term collocated with negative words such as
‘无 (not have)’, ‘未见 (not see)’, ‘没有 (no)’, ‘不像 (not
like)’, ‘不似(not similar)’, ‘否认 (deny)’ and ‘不可

能(not possible)’, it was regarded as one negative
statement, otherwise it was a positive statement.

Fig. 2 One example of the greedy section match algorithm
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Due to the fact that the sentence containing the term
can be positive or negative statement, which reflected
different contribution to the disease, positive and
negative statements’ times of one term in the section
were computed for every patient. Because objective
expression about the patient usually owned simple
phrasing, we used rule-based approaches and listed
some common templates to judge the sentence. With
times of positive and negative statements (Npos and
Nneg) for the term, we could calculated the
consistency of statements with the formula,

Consistencyword ¼ j Npos−Nneg j
max Npos;Nneg

� � :

When one term had most of positive or negative
statements for one patient, its consistency was high.
The mean value of Consistencyword for all VTE pa-

tients, denoted as Consistencyword ¼ 1
N

PN
i¼1

ConsistencywordðiÞ where N was the number of patients
and Consistencyword(i) was the consistency of term in ith

patient, reflecting the term’s consistency of the VTE. High
consistency of the term meant that its meaning was rela-
tively definite and stable. In addition, the variation of
consistency of one term among patients implied attention
from the clinician because terms existed in some text tem-
plates usually.
had low variation, and high standard deviation of

consistency,

σ Consistencywordð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1 Consistencyword ið Þ−Consistencyword
� �2

N−1

s

;

showing that the term attracted more discussions in
medical records.

4) Entropy of first order neighbors Sneighbor: Some words
might be common in various phrases such as some
terms about human body and their neighbors could
be diverse, resulting in low ability to describe the
disease. So neighbors of one term were taken into
account. Words that belonged to the same sentence
without the segmentation of punctuation and
located in the window centered around the term
were numerated (See Fig. 3) and the entropy was
estimated below,

Sneighbor ¼ −
XK

k

Pk ln Pk

where K was the number of unique neighbors of inter-
ested term within window with length L and Pk

¼ NkX

i

Ni
was frequency of word k within the window.

Nk was total counts of word k when its distance with the
term was not more than L. To penalize common terms
existed in many terminologies, we define the penalty

term as Penaltyneighbor ¼ 1
.

1þ Sneighbor
. When one

term’s neighbors were diverse, its Sneighbor was relatively

large and 1
.

1þ Sneighbor
became small.

Then the importance of one term to the section was
computed by the following formula,

Wo ¼ Fword � log10
1

Fdoc

� �
� Penaltyneighbor

� Consistencyword � 1þ σ Consistencywordð Þð Þ;

where Fword � log10ð 1
Fdoc

Þ was the frequency-inverse

document frequency (TF-IDF) [23]. For every section,
terms were sorted in descending order with their
weights and top K terms were saved for further analysis.

Section evaluation by ML methods
The importance of terms to VTE risk assessment was
evaluated in unit of the section at first. Features of spe-
cific section were constructed based on terms within this
section and four ML methods including random forest
(RF) [24], gradient boosting decision tree (GBDT) [25],
logistic regression (LR), and support vector machine
(SVM) [26] were built to compare AUC scores among
different sections. For each section, word vectors of
terms generated in the ‘automatic ontology enrichment’
step were added together and averaged as follows,

Vpatient ¼ 1
K

XK

j¼1
V j

where K was the number of terms in the section and
Vj ∈ℝ

P represented a word embedding with P dimen-
sions for term j. In addition, max pooling operation was
adopted for every dimension of the word embedding,

Mpatient ¼ Max−pooling V 1;V 2;…;VKð Þ
where Mpatient, j was the maximum value of the set

{V1, j,V2, j,…,VK, j} and V1, j meant the jth element of
vector V1. Then one patient was represented by concat-
enating two vectors together [27],

Xpatient ¼ Vpatient Mpatient
� �

:

Two kinds of AUC scores were estimated, AUC (Only)
and AUC (Exclusion). The former was calculated based
on models using features from the current section only,
while the latter was based on models utilizing features
from all sections except the current. When combining
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multiple sections, word embeddings of terms in these
sections were averaged and performed max-pooling op-
eration together. The AUC (Only) reflected the direct
importance of terms belonging to some section and the
AUC (Exclusion) showed the terms’ relative effect on the
VTE prediction. Finally sections were ranked according
to their AUC (Only) and the order reflected the import-
ance of the section to VTE risk assessment.
During the model training process, 20% non-VTE and

VTE inpatients were chosen randomly as test set and
the remaining 80% was utilized to train ML model. 5-
fold cross validation were done to compute the mean
and standard deviation of AUC scores.

Ontology-based VTE risk assessment model
With the importance ranking of terms and sections, we
proposed an approach to automatically select the section
and pick terms associated with VTE from selected sec-
tions to build VTE risk assessment model. This ap-
proach consisted of two steps: choose the best section
set using all terms in sections via a greedy selection
process and next, find the optimal term set from terms
of the section set to build GBDT model.
Firstly, just like the greedy feature selection method

[28], in each iteration, all terms from one section with
relatively high AUC (Only) were added to construct new
features and GBDT models were re-trained to try to im-
prove current prediction performance. Patients’ distrib-
uted representations were updated by re-calculating
average values of word vectors and max-pooling vectors
of terms. During each round the section which obtained
higher AUC improvement than other sections was then
added into the section set. The selection process stopped
when there was no increase in mean values or standard
deviation of AUC scores. We explained the section
evaluation process in details at Fig. 4.
Given the section set with the highest prediction valid-

ity, we try to find best subset of terms of among the sec-
tions to build VTE prediction model. Similar with the
greedy construction of section set, instead of testing per
section, we try to add each term consecutively into the
term set to evaluate its performance in each round. The
term with relatively higher mean AUC value was put
into the term set preferentially. In order to better assess

the relationship between the number of terms and AUC
scores, this process stopped until the term set contained
all terms. Then the optimal number of terms and term
subset was obtained by fitting a curve and searching for
the maximum of mean AUC scores. Considering the fact
that number of terms is much larger than sections’ num-
ber, parallel computing was utilized to reduce running
time.

Results
Demographic characteristics of inpatients
Demographic and clinical features of VTE and non-VTE
inpatients were shown in Table 2. Compared with 2,882
non-VTEs, the gender ratio 1:1.13 and mean BMI value
23.99 ± 4.13 Kg/m2 of VTE patients showed no signifi-
cant difference. VTEs’ average age 55.81 ± 16.45 and
mean hospital day 22 (14, 35) were both obviously
higher than the non-VTE (P value < 0.05). In addition,
Padua model’s results and values of its 11 risk factors
were also calculated. There was notable difference in
Padua score (5.88 ± 2.46 v.s. 2.89 ± 2.45) as well as the
ratio of high risk patients (86.61% v.s 37.40%) between
the two groups, of which values were higher within VTE
patients. Among 11 risk factors, ratios of active malig-
nant cancer/chemotherapy (31.25%), recent trauma/sur-
gery (6.25%), acute myocardial infarction/ischemic
stroke (3.57%), and BMI > =30 kg/m2 (5.80%) for VTE
patients were not significantly different from patients
without VTE. However, ratios of remaining seven factors
of the VTE were higher than the non-VTE. Reduced
mobility (70.54%), ongoing glucocorticoid treatment
(60.71%), acute infection/rheumatologic disorder
(58.48%), heart/respiratory failure (29.12%) were the
most common risk factors for VTE inpatients. The sig-
nificance test was done as follows. Comparison between
the two groups for risk factor that did not obey the nor-
mal distribution was done with the Mann-Whitney U
test, and two-sided independent student t-test was used
to compare the other variables’ significance, with a
threshold of 0.05.

Terms of ontologies from nine kinds of sections
Basic information of terms within distinct sections from
non-VTE and VTE patients respectively during the

Fig. 3 Neighbors of one term when calculating first order neighbors entropy
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Fig. 4 Section evaluation process of VTE risk assessment model

Table 2 Demographic characteristics of inpatients

VTE non-VTE P value Total

N 224 2882 – 3106

Gender (Male) 119 (53.13%) 1587 (55.07%) > 0.05 1673

Age (Year) 55.81 ± 16.45 52.75 ± 16.24 < 0.05 52.97 ± 16.28

BMI (Kg/m2) 23.99 ± 4.13 23.47 ± 4.27 > 0.05 23.51 ± 4.26

Hospital stay (Day) 22 (14, 35) 11 (6, 18) < 0.05 12 (6, 19)

Padua Score 5.88 ± 2.46 2.89 ± 2.45 < 0.05 3.10 ± 2.57

High Risk (Padua model) 194 (86.61%) 1078 (37.40%) < 0.05 1272

Active malignant cancer/chemotherapy 70 (31.25%) 807 (28.00%) > 0.05 877

Previous VTE 34 (15.28%) 17 (0.59%) < 0.05 51

Reduced mobility 158 (70.54%) 1030 (35.74%) < 0.05 1188

Thrombophilic condition 25 (15.63%) 53 (1.84%) < 0.05 88

Recent trauma/surgery 14 (6.25%) 87 (3.02%) > 0.05 101

Age > =70 45 (20.09%) 418 (14.50%) < 0.05 463

Heart/respiratory failure 65 (29.12%) 112 (3.89%) < 0.05 177

Acute myocardial infarction/ischemic stroke 8 (3.57%) 44 (1.53%) > 0.05 52

Acute Infection/rheumatologic disorder 131 (58.48%) 710 (24.64%) < 0.05 841

BMI > =30 kg/m2 13 (5.80%) 165 (5.73%) > 0.05 178

Ongoing glucocorticoid treatment 136 (60.71%) 972 (33.73%) < 0.05 1108

Hospital stay is denoted as ‘Median (lower quartile, upper quartile)’. Age, BMI and Padua score was expressed with ‘Mean ± Standard Deviation’
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process of ‘Automatic Ontology Enrichment’ were shown
in Table 3, and the number of terms and neighbors were
listed. It can be seen that the section ‘Present History’
had the most terms (1,162 in non-VTE and 1,244 in
VTE) and the ‘Personal History’ had the least (20 in
non-VTE and 18 in VTE) in both non-VTE and VTE.
As for the neighborhood information, size of neighbors
of terms in the ‘Progress Note’ was much larger more
than other sections (148 in non-VTE and 31 in VTE),
and conversely, the ‘Chief Complaint’ had the smallest
neighbors size (13 in non-VTE and 2 in VTE). Generally
counts of terms between the non-VTE and the VTE
were comparable but terms in the non-VTE had more
abundant neighbors, which may be resulted from their
gap in the number of samples.
During the process of automatic ontology enrichment

by sorting terms according to their importance, results
obtained via adding information of entropy of neighbors
and consistency of terms differed from the order that
uses TF-IDF values only. For example, in the section
‘Progress Note’, terms ‘左侧 (left side)’, ‘可能 (maybe)’, ‘右
侧 (right side)’ and ‘继续 (continue)’ were among top 10
terms calculating by TF-IDF, which had abundant neigh-
bors but low standard deviation of term consistency.
Our proposed scoring approach penalized these terms
and revealed more professional terms in the ranking of
terms, such as ‘血细胞 (hemocyte)’, ‘呼吸音 (breath
sounds)’, and ‘呼吸 (breathe)’, of which their TF-IDF
values were low.

Comparison of section importance on VTE risk prediction
To decide the number of terms in the section we should
choose and the best suitable ML method, we compared
four ML models’ AUC scores by selecting top K = 100,
200, 300, 400 terms in each section respectively when
fixing word embedding dimension (P = 20). Terms of all
sections were combined to build patients’ distributed

representations and results could be found in Fig. 5. It
could be seen that four ML methods achieved the high-
est AUC values using top 300 terms in every section and
GBDT performed better than other methods. So for the
following experiments, we extracted top 300 terms of
each section from VTE patients. Then the optimal word
embedding dimension and the most suitable ML method
were determined by comparing AUC scores of four ML
approaches when P = 10, 20, 40, 80, 100, 120, 150, and
200. It could be seen that the performance of GBDT was
better than other methods on most of conditions, and
when the dimension was more than 100, AUC scores of
GBDT tended to be stable (Table 4). Therefore the most
appropriate dimension of word vector was P = 100 and
GBDT approach was chosen as default.
AUC (Only) and AUC (Exclusion) scores of 9 types of

sections were shown at Table 5. Obviously terms from
the ‘Progress Note’ had the highest AUC (Only) score,
0.939 and results excluding them led to the worst AUC
(Exclusion) value obviously, 0.784, verifying its key role
in VTE prediction. Apart from the ‘Progress Note’, AUC
(Exclusion) scores of remaining sections were similar,
which implied that efficiency of terms of them weren’t
of much difference. Only considering the AUC (Only),
the second best section was the ‘Admitting Diagnosis’
with the value 0.754 and terms from the ‘Personal His-
tory’ showed the lowest score, 0.564. One interesting ob-
servation was that when we used terms in all sections,
the prediction validity (0.929) was less than the result
from a single section such as the ‘Progress Note’, which
reflected the importance of ontology and section evalu-
ation. Comparing the values of AUC (Exclusion) of sec-
tions and AUC (All) using all sections, removing terms
from ‘Previous History’ and ‘Physical Examination’ in-
creased AUC (All). A possible reason could be that
terms from the two sections introduced more noises
than useful information for model training.

Table 3 Number of terms of ontologies within different
sections

Section Name Non-VTE VTE

Term Neighbor Term Neighbor

Chief Complaint 44 13 (6, 28) 53 2 (1, 4)

Present History 1162 37 (22, 75) 1244 4 (2, 6)

Previous History 197 32 (18, 53) 224 4 (2, 6)

Personal History 20 16 (9, 32) 18 3 (2, 5)

Family History 28 22 (9, 33) 26 4 (1, 6)

Physical Examination 391 16 (7, 30) 380 3 (2, 6)

Laboratory Examination 385 29 (18, 49) 344 3 (2, 6)

Admitting Diagnosis 175 42 (29, 67) 211 5 (3, 8)

Progress Note 733 148 (92, 267) 811 31 (17, 58)

The ‘Neighbor’ is the number of distinct words around terms with a window
length 5 and is expressed with ‘Median (lower quartile, upper quartile)’

Fig. 5 AUC scores of four ML methods using top K = 100, 200, 300
and 400 terms
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Best section set on VTE prediction
By selecting terms and sections greedily, terms of two
sections, namely ‘Progress Note’ and the ‘Admitting
Diagnosis’, were chosen and achieved the best VTE as-
sessment performance. Using all terms from these two
sections, the best mean AUC values, 0.951 ± 0.009, was
obtained which were higher than the traditional Padua
model (0.803 ± 0.027). Furthermore GBDT model’s sen-
sitivity (0.877 ± 0.019) was similar with the Padua
(0.897 ± 0.046) while specificity of GBDT (0.880 ± 0.006)
showed obvious superiority over the latter (0.617 ±
0.015). Because terms used by GBDT models were
ranked only based on medical records of VTE patients,
we visualized unique terms existed only in non-VTE’s
or VTE’s ‘Admitting Diagnosis’ and ‘Progress Note’.
Results were plotted at Fig. 6 by the word cloud toolkit
(https://github.com/amueller/word_cloud) for ease of
comparison.
There were 237 common terms in ‘Progress Note’ and

126 identical terms in ‘Admitting Diagnosis’ between
VTE and non-VTE. Medical records of VTE patients
had 63 and 85 unique terms in ‘Progress Note’ and ‘Ad-
mitting Diagnosis’ respectively. Non-VTE patients had
63 distinct terms in ‘Progress Note’ and 49 particular
terms in ‘Admitting Diagnosis’. Visual differences of
terms between non-VTE and VTE can be found. Among

the terms of VTE patients’ progress notes, ‘warfarin’, ‘pro-
thrombin time’, ‘heparin’ and ‘retirement’ were ranked
higher in the list, which were associated with the disease.
In the admitting diagnosis, VTE related terms such as
‘veins of lower extremity’, ‘aniline’ and ‘hemoptysis’ were
within the top five. However, some terms which might
be meaningless were also included such as ‘bluntness’,
‘molecule’ and ‘patient’, which should be filtered in the
following process of model deviation.

Performance of new VTE risk assessment model
Based on terms from two sections, ‘Progress Note’ and
‘Admitting Diagnosis’, results of greedy term selection
were plotted in Fig. 7. Figure 7a showed how AUC
scores of GBDT model changed with the number of
added terms and model’s performance achieved the opti-
mal AUC (0.973 ± 0.006) using about 110 terms. Chan-
ging curves of sensitivities and specificities of GBDT
were also shown at Fig. 7b and c, and the best model’s
sensitivity (0.900 ± 0.037) and specificity (0.918 ± 0.012)
with 110 terms were nearby the maximum. Conversely,
the performance of Padua model was stable (Fig. 7d)
and its AUC values were fluctuating around 0.80. ML
model utilizing 110 terms had higher predictive validity
than the Padua (AUC: 0.791 ± 0.022, Sensitivity: 0.846 ±
0.049, Specificity: 0.628 ± 0.013).
We further organized the top 110 terms into several

groups based on their relations with VTE events, and
some typical terms were listed at Table 6. Terms in the
medical record included the following two aspects. First,
terms concerning diagnostic terminologies and suscep-
tible sites included ‘embolism’, ‘veins in the lower limbs’,
‘left lower limb’ and ‘shrank’, which were obviously re-
lated to the VTE events. Secondly, some terms repre-
senting risk factors of VTE were also found in the
medical record. For instance, as a VTE risk factor in
consensus, tumor was expressed with keywords of
‘lymphoma’, ‘paclitaxel’, ‘adenocarcinoma’. Similarly,
surgery and invasive operation were illustrated in
terms of ‘resection’, ‘cholecystectomy’ and ‘stenting’.
Furthermore, rheumatic immune disease and acute in-
fection indicated by terms of ‘rheumatoid arthritis’,
‘lupus nephritis’ and ‘septic shock’ were also in ac-
cordance with the VTE events.

Table 4 Comparison of AUC scores of four ML models using word vectors with different dimensions

Dimension 10 20 40 80 100 120 150 200

AUC (GBDT) 0.863 ± 0.024 0.891 ± 0.023 0.916 ± 0.026 0.916 ± 0.017 0.929 ± 0.014 0.929 ± 0.015 0.927 ± 0.020 0.927 ± 0.020

AUC (RF) 0.852 ± 0.022 0.871 ± 0.030 0.883 ± 0.023 0.881 ± 0.029 0.884 ± 0.021 0.893 ± 0.020 0.897 ± 0.018 0.884 ± 0.019

AUC (LR) 0.851 ± 0.023 0.884 ± 0.019 0.912 ± 0.019 0.921 ± 0.020 0.926 ± 0.022 0.923 ± 0.022 0.920 ± 0.026 0.923 ± 0.014

AUC (SVM) 0.862 ± 0.019 0.873 ± 0.034 0.861 ± 0.031 0.879 ± 0.021 0.869 ± 0.025 0.880 ± 0.031 0.867 ± 0.023 0.830 ± 0.034

The value of AUC score is formatted with ‘Mean value ± Standard deviation’. All terms are used to train models

Table 5 AUC scores of GBDT models using only or excluding
some section

Section Name AUC (Only) AUC (Exclusion)

Chief Complaint 0.635 ± 0.029 0.930 ± 0.015

Present History 0.748 ± 0.023 0.933 ± 0.021

Previous History 0.610 ± 0.033 0.927 ± 0.019

Personal History 0.564 ± 0.019 0.929 ± 0.017

Family History 0.605 ± 0.029 0.926 ± 0.023

Physical Examination 0.711 ± 0.019 0.928 ± 0.021

Laboratory Examination 0.638 ± 0.036 0.940 ± 0.016

Admitting Diagnosis 0.754 ± 0.034 0.923 ± 0.017

Progress Note 0.939 ± 0.018 0.784 ± 0.035

ALL 0.929 ± 0.014

The value of AUC score is formatted with ‘Mean value ± Standard deviation’.
AUC scores with one specific section are denoted as ‘AUC (Only)’ and results
excluding some section are ‘AUC (Exclusion)’. The ‘ALL’ means that terms from
all sections are used
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Discussion
Proposed ontology-based workflow not only evaluates
the importance of terms within various sections of med-
ical records, but also builds efficient new risk prediction
model, with the assistance of NLP and ML technologies.
Terms used for building VTE prediction model can help
clinicians explore disease’ risk factors more conveniently.
The efficiency of the workflow was verified on medical
records from PUMCH.

In general, there are plenty of words in medical free
text unrelated to the disease and different sections of
medical records usually have distinct aspects about pa-
tients information. Based on these facts multiple types of
medical ontologies are utilized and terms in ontologies
are classified according to different types of sections.
From Table 3, the differences of terms’ counts and the
number of neighbors among sections are apparent. Fur-
ther terms’ number within sections is not directly

Fig. 6 Unique terms within progress notes and admitting diagnosis only from VTE or non-VTE patients

Fig. 7 Relationships between predictive validity of two models, GBDT and Padua, and the number of terms
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correlated with the section’s disease prediction ability
combining with Table 5. Although terms in the ‘Present
History’, ‘Physical Examination’ and ‘Laboratory Examin-
ation’ are more abundant than the ‘Admitting Diagnosis’,
AUC (Only) scores of the former are relatively lower. In
addition, by comparing average positions of 110 terms
proposed by new VTE risk assessment model in two
terms lists ranked by our ontology enrichment method
and traditional TF-IDF respectively (Table 7), the aver-
age position of ontology enrichment is relatively better
than the TF-IDF, reflecting the superiority of ontology
enrichment again.
One notable thing is that combining comprehensive

terms don’t get the best prediction performance. Results
from Table 5 and Fig. 7 show that choosing sections as-
sociated with the disease and using subset of terms can
obtain more promotion on VTE risk assessment. Al-
though collecting numerous data about patients be-
comes a reality and while many popular end to end
methods propose to mining patients’ patterns directly
from raw data [12, 29], we argue that identifying signifi-
cant information and removing noises are still very im-
portant. By ontology selection and removing redundant
sections we may improve model’s efficiency further. In
Table 6, terms proposed by the model include not only
diseases and medications but also body parts, symptoms
and common expressions. Current DL methods [30, 31]
usually utilize structural information and only consider
limited types of codes about diseases, drugs and proce-
dures to build the model. These are not enough to de-
scribe interested diseases of interest. Multiple types of
ontologies and unstructured clinical notes should be
taken into account.

The final VTE risk assessment model based on picked
terms show higher sensitivity, specificity and AUC than
the Padua. Although the ML model seems to perform
better, its differences with the Padua should be empha-
sized. In reality the ML model used much more features,
110 terms, compared to the Padua with 11 factors.
Padua model uses medical knowledge, which is summa-
rized from clinical practice, instead of words written by
clinicians. Just checking existence of specific terms may
result in overfitting or inferior generalization. In future,
classification of terms and utilizing structures of ontol-
ogies, e.g. the knowledge graph, to associate terms in
clinical notes with medical knowledge are necessary,
providing better interpretability. Considering that only
one hospital’s clinical dataset was used to train VTE risk
assessment model for Chinese inpatients, multiple-
center research is needed to evaluate its generalizability
further. In addition, small sample size of VTE patients is
also a limitation. More medical records should be col-
lected and new approaches to model derivation based on
ontologies need to be explored.
Since VTE is a complex multi-factor disease, the effect

of risk stratification with limited factors based on the
existing experience is not satisfactory (studies shown
that the Padua model has poor performance and low
specificity). The ML model developed in this study can
help clinicians to judge the risk stratification of patients
more accurately, as well as find out new risk factors and
potential VTE patients ignored by the physicians. Mean-
while, risk prediction using the keywords in the medical
record text through the electronic medical record
system, is simpler and much more convenient, which
provides novel ideas for discovering new disease
mechanisms.

Conclusions
In this study, a method of ontology-based VTE risk fac-
tors mining and model establishment from medical re-
cords is validated on real clinical dataset from PUMCH.
Selected terms and sections from medical records help
the clinicians discover potential VTE risk factors and

Table 6 Classification of typical terms proposed by ML model

Classification Name Typical Terms

Predilection site and clinical
manifestation

Thrombus, Lower limb vein, Left lower limb, Posterior tibial vein, Thrombosis, Femoral vein, Embolism, Shank,
Hemoptysis, Pulmonary artery

Treatment Warfarin

Tumor Paclitaxel, Lymphoma, Lung adenocarcinoma

Surgery, Trauma, Invasive
Operation

Resection, Peritoneal dialysis, Cholecystectomy, Stenting

Rheumatic Disease Rheumatoid arthritis, Prednisone, Hyperuricemia, Lupus nephritis

Acute Infection Bacteria, Pneumonia, Antibiotics, Septic shock, Vancomycin, Soft tissue infection

Mechanical Ventilation Mask

Table 7 Terms’ average positions of ontology enrichment and
TF-IDF methods

Top@K 10 30 50 70 90 110

Ontology Enrichment 146.6 214.1 218.9 218.7 215.6 218.7

TF-IDF 161.4 238.0 248.4 242.9 237.2 235.8

The ‘Top@K’ means top K terms among 110 terms proposed by new VTE risk
assessment model
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GBDT model built based on top 110 terms improves the
performance of VTE prediction. This method is ex-
pected to be applied in more diseases and embedded
into the EHR system to assist clinical work.
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