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Abstract

Background: In radiotherapy, minimizing the time between referral and start of treatment (waiting time) is
important to possibly mitigate tumor growth and avoid psychological distress in cancer patients. Radiotherapy
pre-treatment workflow is driven by the scheduling of the first irradiation session, which is usually set right after
consultation (pull strategy) or can alternatively be set after the pre-treatment workflow has been completed
(push strategy). The objective of this study is to assess the impact of using pull and push strategies and explore
alternative interventions for improving timeliness in radiotherapy.

Methods: Discrete-event simulation is used to model the patient flow of a large radiotherapy department of a
Dutch hospital. A staff survey, interviews with managers, and historical data from 2017 are used to generate model
inputs, in which fluctuations in patient inflow and resource availability are considered.

Results: A hybrid (40% pull / 60% push) strategy representing the current practice (baseline case) leads to 12%
lower average waiting times and 48% fewer first appointment rebooks when compared to a full pull strategy,
which in turn leads to 41% fewer patients breaching the waiting time targets.
An additional scenario analysis performed on the baseline case showed that spreading consultation slots evenly
throughout the week can provide a 21% reduction in waiting times.

Conclusions: A 100% pull strategy allows for more patients starting treatment within the waiting time targets than
a hybrid strategy, in spite of slightly longer waiting times and more first appointment rebooks. Our algorithm can
be used by radiotherapy policy makers to identify the optimal balance between push and pull strategies to ensure
timely treatments while providing patient-centered care adapted to their specific conditions.
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Background
Radiotherapy (RT) is a therapy modality for cancer treat-
ment that requires several preparation steps consisting
of imaging and treatment planning. RT resources are ex-
pensive and limited in capacity, and treatments are pre-
pared and delivered by a multidisciplinary group of
specialists with multiple activities and limited time avail-
ability [1]. As demand for RT continues to grow [2] and
cancer treatments become more personalized [3], ensur-
ing a timely delivery of RT for each patient trajectory

without jeopardizing the timeliness of the other patients
is not straightforward. Earlier research has shown that
the dynamic nature of treatment scheduling in RT, in
which scheduled and non-scheduled patients have to be
queued up for undergoing pre-treatment, can consider-
ably impact access times for RT [4, 5]. Long waiting
times1 have been associated with negative clinical out-
comes such as higher risk of local recurrence [6], in-
creased tumor progression [7] and prolonged
psychological distress in patients [8]. In fact, the unavail-
ability of medical staff was pointed out as one of the
main causes for this [9]. Related to this, Hutton et al.
found that RT professionals in the UK are prone to the
effects of compassion fatigue and burnout and that
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special attention must be paid to workload and its im-
pact on practitioners’ job satisfaction [10].
The RT treatment process starts with referral, followed

by a consultation with a radiation oncologist, who pre-
scribes the necessary steps needed (referred to as “pre-
treatment workflow”) before the treatment starts. The
pre-treatment workflow includes imaging (CT, MRI,
PET-CT), contouring of the tumor and organs-at-risk,
and treatment planning, and is commonly driven by the
scheduling of the first irradiation session, which is usu-
ally set immediately after consultation. This demands
pre-treatment workflow to be programmed a priori be-
fore the scheduled starting date for treatment. We refer
to this strategy as the “pull” strategy [5], a term derived
from logistics and supply chain management where
manufacturing is driven by customer demand and re-
sources are expected to be available at each operation
when needed for just-in-time production. In RT, a pull
strategy foresees that a date for the start of treatment is
set right after consultation, and the scheduling of pre-
treatment workflow is performed in a “backwards” fash-
ion, ensuring that the necessary rooms and staff will be
available when needed to meet timeliness targets. How-
ever, for some patient types, the first irradiation is
scheduled after (some) the pre-treatment steps have
been completed, typically at the start or at the end of
treatment planning This is referred to as “push” strategy,
which in logistics terms refers to a continuous flow of
products throughout the system, with no specific due
date, typically leading to store inventory. By applying a
push strategy in radiotherapy flexibility to perform pre-
treatment activities and consequently a low number of
first linac appointment rebooks can be expected. However,
setting a treatment start date right after consultation (pull
strategy) may lead to increased patient and staff (doctors)
satisfaction, particularly when time slots for doctors’ activ-
ities (e.g. contouring of the tumor) are pre-allocated in co-
ordination with treatment scheduling decisions. It may
also increase control over the work in progress, leading to
a reduced number of patients breaching the waiting time
targets. Therefore, appropriate workflow management sys-
tems (e.g. scheduling routines) and the design of efficient
resource planning schemes are crucial to meet the
intended waiting time targets [11] while ensuring patient
centeredness and quality of labor.
Operations research (OR) methods have been success-

fully used to support decision-making in health care in
general [12], and increasingly in radiotherapy [13].
Among OR methods, discrete-event simulation (DES)
stands out as a powerful tool to find logistical interven-
tions for performance improvement by modeling the be-
havior of complex systems as a series of discrete events
occurring over time [14]. DES has been proven useful in
testing operational changes in several healthcare settings

[15], such as analyzing optimal discharge rates in acute
care [16], capacity management and patient scheduling in
outpatient clinics [17], and decreasing throughput times
for CT scanning in radiology departments [18, 19]. In the
field of radiotherapy, a few DES studies have been con-
ducted for process improvement and resource planning.
Kapamara et al. [20] performed a patient flow simulation
analysis to find bottlenecks in the Arden Cancer Center,
UK, to reduce waiting times and maximize patient
throughput. The authors were able to model three treat-
ment modalities (conventional external-beam, brachyther-
apy, and unsealed sources therapy), and found that an
extension of clinical shift hours reduces patients’ waiting
times by 2%. Proctor et al. [21] modeled patient care path-
ways from arrival to discharge to estimate the impact of
increased levels of demand in the performance of the de-
partment of RT of the Walsgrave hospital, UK. They re-
ported that reducing the percentage of patients seeing
their own doctor on the simulator from 71 to 35% and ex-
tending the linacs’ operating hours by 38% would provide
the best performance, with 82% of the patients starting
treatment within the desired target. Werker et al. [22]
used DES as an attempt to improve the RT planning
process of the RT center of the British Columbian Cancer
Agency in Canada, finding that reducing delays associated
with the oncologists’ tasks would reduce the planning
times by 20%. Babashov et al. [23] included the treatment
stage of the RT trajectory, thus modeling the process from
patient arrival to treatment completion. They found that
adding one more full-time oncologist would reduce the
waiting times by 6.55%, leading to around 85% of the pa-
tients starting treatment within 14 calendar days. Crop
et al. [5] studied an alternative workflow control system
for robotic stereotactic RT by testing a constant work-in-
progress system that only allows new patients to start pre-
treatment when a patient leaves the system, in an attempt
to keep workload constant. Results showed that a hybrid
constant work-in-progress workflow could potentially in-
crease the number of irradiation sessions per day by 32%,
while the time between CT and start of treatment
remained stable at an average of 9 days.
Computer simulation studies of RT are available but

mainly focus on finding operational improvements by re-
dimensioning workforce, expanding machine capacity/
availability, or extending clinical opening times, whilst the
impact of implementing alternative scheduling routines
and different workflow control systems are rarely found.
In this work, we model the RT pre-treatment workflow
using DES to quantify the operational impact of using pull
and push strategies in RT scheduling. As a secondary goal,
we try to find interventions (e.g. increase treatment plan-
ning capacity) that maximize the number of patients start-
ing treatment within the intended targets and allow for
minimal waiting times.
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Methods
We used DES modeling to construct a model on the flow
of patients receiving external-beam RT in the Netherlands
Cancer Institute (NKI) from consultation to the start of
treatment (first fraction). The model was built using Tec-
nomatix Siemens Plant Simulation 13.2 by Siemens PLM
Software [24]. After the model was validated, we studied
the impact of increasing the number of pull patients start-
ing from the baseline case representing the current prac-
tice (40% pull / 60% push), as well as other possible
interventions for performance improvement.

The RT treatment workflow in the NKI
Figure 1 depicts the RT workflow in the NKI. Upon re-
ferral, patients are scheduled for a consultation (Moment
1) with a radiation oncologist, who becomes responsible
for monitoring the patient’s care trajectory. At consult-
ation, the doctor meets the patient and assesses all the
information needed to plan an RT treatment. After con-
sultation, the doctor fills in a form (PlanRT) with the
medical information and sets up a preliminary treatment
plan outlining the care pathway intended for the patient.
The pre-treatment workflow starts after consultation,
when patients are scheduled for a CT scan, but a delay
before pre-treatment starts, due to other appointments
(e.g. IV-contrast, blood analysis, manufacturing of
patient-specific aids such as masks etc.) may be needed,
as well as additional imaging examinations (MRI and
PET-CT). In case a 4DCT has been taken, imaging

motion compensation is needed (warping). If multiple
imaging scans are involved, then the registration of the
different datasets is also necessary (image registration).
Thereafter, the doctor delineates the target area (con-
touring), right before treatment planning. At this step,
beam set-up (simplified treatment planning such as the
two-field technique “anterior-posterior-posterior-anter-
ior”) may be done instead or in conjunction with regular
treatment planning. Once treatment planning is finished,
the generated plan is uploaded to the corresponding
linac and the treatment can start. The modeled pre-
treatment workflow, indicated by the black bounding
box in Fig. 1, starts right after consultation (PlanRT) and
ends at the start of treatment. The time needed to
complete the pre-treatment phase is referred to as “wait-
ing time” in this study.
Regarding the appointment scheduling process, Fig. 1

shows that upon submission of the PlanRT sheet after
consultation, an appointment officer schedules all the ne-
cessary imaging scans for all patients. This moment in
time is represented by “Moment 1” in Fig. 1. At Moment
1, acute patients, subacute patients, and regular (i.e. non-
urgent) patients who have a combination of RT with other
treatment modality (surgery or chemotherapy) are also
scheduled for all irradiation sessions right after consult-
ation. We refer to these as “pull” patients. Acute and sub-
acute patients are scheduled in a pull manner as a timely
start of treatment needs to be ensured due to the urgency
of their treatment. Regular patients with a treatment

Fig. 1 Flowchart of the complete RT treatment workflow in the NKI
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combination between RT and other treatment modality
(e.g. chemotherapy or surgery) also need to be scheduled
right at consultation. For these patients, a proper time co-
ordination between irradiation sessions and the other treat-
ment modality is necessary to maximize the effectiveness of
the combined treatment. For pull patients, pre-treatment
activities need to be given enough time to be completed be-
fore the pre-scheduled starting date to avoid linac sessions’
rebooks. Alternatively, regular patients without a combin-
ation of treatment modalities, indicated as “push” patients
in this study, are scheduled for the start of treatment only
once contouring has been done and treatment planning has
started, as indicated by Moment 2 in Fig. 1.

Model inputs
In DES, a number of inputs are needed to generate
events (e.g. patient arrivals, processing times, resource
availability) that represent the behavior of the real sys-
tem. In our model, we used historical data from the
whole year 2017 (January 01 to December 31) as model
inputs to (randomly) generate those events. To obtain
data that was not available in the internal databases, we
conducted several interviews with radiation oncologists,
radiation therapy technologists (RTTs), managers and
appointment schedulers to estimate the most realistic
values for each input parameter. Table 1 presents an
overview of all input parameters of our DES model.

Model development
The modeled steps, scheduling routines and their relation-
ship with the input parameters are depicted in Fig. 2. The
specific workflow and data contained in each component
are explained in more detail throughout this section. Pa-
tient arrivals are generated using records of PlanRT form
creation dates (after consultation), followed by the cre-
ation of patient care content according to the probability
distributions mentioned in Table 1. At this point, push pa-
tients will be scheduled the necessary imaging scans, and
will proceed to the pre-treatment workflow CT/MRI/
PET-CT/IPP, contouring and treatment planning. Pull pa-
tients will also be scheduled the start of treatment before
following the same route. The start of treatment of push
patients is then scheduled at treatment planning. “Re-
source availability” and “processing times” contain the lo-
gistics data used in the scanning, contouring, image post-
processing, and treatment planning steps.

Patient arrivals
We used historical data from the year 2017 to determine
probability distributions for the arrival processes in the
NKI, which are used in the DES model to generate pa-
tient arrivals. We considered the historical records of all
PlanRT forms filled in by the doctors after consultation
as patient arrivals, excluding weekends and public holi-
days. In total, we included 4973 patient care pathways

Table 1 Input parameters of the DES model

Name Description Probability
Distribution

Dependencies

Patient arrivals Patient arrival rates per weekday, per tumor site (8 independent generators) Poisson –

Care plan Proportion of patients in each of the 62 possible care trajectories depending on tumor site
(generators)

Empirical Tumor site

Urgency level Proportion of acute, subacute, and regular per care plan Empirical Care plan

Steps needed Proportion of patients with CT, MRI, PET-CT, warping, image registration, contouring, and treatment
planning type, per care plan, per urgency level

Empirical Care plan
Urgency level

CT/MRI/PET-CT
processing times

CT = 25min. MRI = 45min, and PET-CT = 45min, regardless of other parameters. – –

Image Post-processing
times

Mean and standard deviation of the duration for processing warping and image registration. Lognormal –

Contouring time 60min for tumor contouring, and 60min for peer-review review. – –

Treatment planning
times

Processing times of P2, P3, and P4, depending on the care plan. – Care plan

Scheduling of first
fraction

Proportion of patients for each possible duration of the time-to-treatment (0 … 21 days) per
urgency level, per weekday

Empirical Weekday
Urgency level

Planned delay Proportion of patients with a planned delay before pre-treatment, and the length of the delay
(1 … 8 weeks), per care plan

Empirical Care plan

Machine availability Time of the day each CT, MRI, and PET-CT is available to be operated – –

Doctors’ agenda Start time and end time for each day of the simulation period, and parts of the day the doctor
is unavailable due to other scheduled activities (meetings, research, etc.)

– –

RTTs’ agenda Start time and end time for each day of the simulation period – –

Public holidays and
days-off

Days of the simulation period in which the clinic is not operating, and days each RTT and
doctor is unavailable (days-off)

– –
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recorded in 2017 for external-beam RT treatments. Earlier
research has shown that there were statistically significant
differences in the patients arrivals between workdays, and
that patient arrival patterns follow a Poisson distribution
in each workday [25]. An updated ANOVA analysis with
the 2017 data using the probability-distribution fitting
software EasyFit [26] resulted in the same conclusions
(Table 2), i.e. patient arrivals were found to follow a Pois-
son distribution for every weekday.
In the NKI, patients are assigned one of eight possible

tumor sites upon referral: Bone metastasis, Breast, Lung,
Brain, Prostate, Head-and-neck, Chest wall, or Others, as
depicted in Fig. 3. Each tumor site has a different consult-
ation pattern over the week. For instance, consultations
for (regular) lung patients are mostly held on Wednesday
mornings. Therefore, we generated patient arrivals in the
model by using the mean arrival rate per tumor site, per
weekday, according to a Poisson distribution (Table 2)
and using the proportions presented in Fig. 3.

Patient care content
The attributes of each patient (care plan, urgency level,
specific steps needed, planned delay before pre-
treatment, and start of treatment date) were randomly
assigned based on the historical breakdown measured in

2017. After consultation, the doctor selects one of 62
possible trajectories for the patient, which depends on
the tumor site for that patient (see Additional file 1). For
instance, a lung patient may be assigned the palliative
trajectory, or the regular trajectory, which would yield a
different care pathway. The care trajectory defines
whether a patient would require MRI (18.5% of the
population), PET-CT (3.9%), Warping (12.4%), Image
registration (29.7%) or Beam set-up (34.7%). All patients
require a CT, contouring, and treatment planning. The
urgency level indicating whether a patient is acute (1.3%
of the patient population), subacute (30.8%), or regular
(67.9%) was generated based on the historical propor-
tions verified for the corresponding trajectory. Moreover,
measured data shows that 650 out of the 4973 patients
(13%) have a planned delay before starting pre-treatment
(CT) due to medical reasons (e.g. RT after surgery, den-
tist) or patient preferences (e.g. holidays), the delay ran-
ging between 1 and 8 weeks. In the 2017 data, we found

Fig. 2 Components of the DES model and their relations with input parameters

Fig. 3 Distribution of patients by tumor site in 2017

Table 2 Patient arrival statistical analysis for the 2017 data

Weekday Sample Size Prob. Dist. Mean (SD) p-value

Monday 859 Poisson 17.5 (4.7) 0.72

Tuesday 1067 Poisson 20.9 (5.7) 0.24

Wednesday 1208 Poisson 23.2 (6.7) 0.61

Thursday 1063 Poisson 21.7 (5.9) 0.51

Friday 776 Poisson 15.5 (5.4) 0.25
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that 40.8% of the patients were scheduled in a pull fash-
ion (SD = 5.8%), while the remainder 59.2% were sched-
uled using on a push fashion. Empirical distributions
using the above-mentioned proportions were used to
create patient care content in each replication of each
computational experiment.

CT/MRI/PET-CT scheduling
Scheduling of scanning appointments in imaging rooms
are assigned on a first-come-first-planned basis, except for
some appointments in CT scanners, where a pre-allocation
of specific time slots exists. For instance, the first two time
slots in the morning cannot be assigned to patients who
need IV-contrast before the CT, as the corresponding doc-
tor must be present in the department but may not have
started his/her shift before 08 h30. Similarly, there is one
time slot exclusively available for acute patients per day.

Contouring
Doctors are grouped in teams based on their specialty:
Breast, Lung, Urology, Head-and-neck, Gynecology,
Gastrointestinal tract, and Central nervous system.
Table 3 presents the total number of doctors per spe-
cialty. Depending on the specific tumor site, a doctor be-
longing to the corresponding specialty is assigned to the
patient using empirical distributions from the 2017 data.
Contouring of palliative patients (acute and bone metas-
tasis), accounting for 815 of the 4973 patients, can be
undertaken by any available doctor right after scanning.
Pending contouring activities waiting in queues are
sorted on an Earliest Due Date (EDD) basis, giving prior-
ity to the patients with the earliest date for start of treat-
ment. For push patients, who have not been scheduled
at this point, we considered the target date for start of
treatment according to the national targets.

Treatment planning
Treatment planning is divided in three types: P2, P3, and
P4. There used to be a P1 type that does not currently
exist in the NKI. P2, also referred to as beam set-up, is a

simpler form of planning mostly undertaken for bone
metastasis and some breast cancer patients. P3 is a form
of automated planning in which a computer software
performs the planning autonomously. P4 is the conven-
tional treatment planning modality, in which beam an-
gles and intensities are iteratively optimized with the
help of a computer software. P3 is immediately assigned
to all breast, rectum, and prostate patients, as the plan-
ning of these tumor sites was automated in 2017. P4 will
be assigned to all patients belonging to the other patient
groups who have not been assigned P2 or P3. The as-
signment of P2 is modeled by means of empirical distri-
butions that vary per care plan, i.e. the probability of a
patient being assigned P2 varies depending on the care
plan of that patient (see Additional file 1). For instance,
93% of all bone metastasis patients will have a P2 type of
planning, while a head-and-neck patient will never be
assigned P2, which means that he/she will always be
assigned P4. Out of the 24 planning RTTs available, 3 hold
a P2 level, 7 are skilled at level P3, and the remaining 10
are considered at level P4. P4 planners are also able to per-
form P3 and P2, and P3 planners can also perform P2.
Moreover, P3 and P4 level planning RTTs can process 2
plans simultaneously. As with the previous step, treatment
planning of acute patients and bone metastasis patients
can be performed by any available planner right after scan-
ning, and queued tasks are prioritized on an EDD basis.

Scheduling of first fraction
A statistical analysis showed that the time between arrival
and the start of treatment do not follow any specific prob-
ability distribution with sufficient statistical significance
(p-value > 0.05). Therefore, we used empirical distributions
to randomly assign a date for start of treatment for both
pull and push patients. For pull patients (40% of the total
population), a treatment start date is generated based on
the historical records upon first consultation. Since certain
care plans have starting date requirements (e.g. head-and-
neck patients must start on a Monday), we generated this
time to treatment depending on the weekday of the re-
quest. This means that, for instance, a regular head-and-
neck patient having the first consultation on a Tuesday will
most likely be assigned a time to treatment of 6 or 13 days.
According to the measured data, time to treatment of pull
patients ranges between 0 and 1 day for acute patients, be-
tween 1 and 8 days for bone metastasis and subacute pa-
tients, and between 3 and 21 days for regular patients.
Push patients (60%) are assigned a time between treatment
planning and start of treatment that can range between 1
and 7 days, also generated on a weekday basis.

Resource availability
The RT department of the NKI operates from 07 h30 to
17 h30 on every weekday except public holidays. Staff

Table 3 Doctor teams and corresponding number of elements
in the NKI during 2017

Specialty No. doctors

Lung 7

Head-and-neck 9

Breast 9

Central nervous system 3

Gynecology 4

Gastrointestinal tract 5

Urology 7

Palliative All (44)
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members work 8 or 9-h shifts (with breaks) while rooms
and machines are available during the 10-h period. The
department has 2 CT scanners, 1 MRI scanner, and 1
PET-CT scanner. The PET-CT scanner is shared with
the diagnostics department. In total, there are 26 time
slots of 25 min available per day for CT scanning, 37
weekly slots of 45 min for MRI, and 5 weekly time slots
of 45 min for PET-CT. As for staff members, the depart-
ment hosts a total 113 RTTs (75 FTE), of which 24 can
do treatment planning. In addition, there are 44 practi-
tioners (26 FTE) in the department, which include radi-
ation oncologists, residents and physician assistants.
Their main duties include patient consultations, regular
meetings (such as multi-disciplinary, RT treatment dis-
cussions, and research) and other administrative tasks.
In the NKI, a doctor is available to perform contouring
whenever he/she is not scheduled to do any of the pre-
allocated tasks. Except for scheduled activities, the doc-
tor gives priority to perform contouring over the other
non-scheduled duties. The weekly schedule and absent
days (incl. Holidays, sick leave, conferences, training,
etc.) of each staff member throughout 2017 have been
used for the staff availability of our model.

Processing times
A CT scan has a time slot duration of 25 min, while an
MRI and a PET-CT usually take approximately 45 min
each. We included two possible tasks (warping and
image registration) for IPP based on the historical re-
cords, which were found to follow a lognormal distribu-
tion with the mean and standard deviation presented in
Table 4. If warping is needed for a patient, a delay corre-
sponding to the time between CT and warping (CT-
Warping) is generated. In case a patient needs multiple
scans and thus has the need for image registration, we
forced a delay respective to the time between the last
scan (warping included) and image registration (Scan-
ning-Image registration).
In the NKI, a contouring typically takes up to 30min for

acute and subacute patients, and 1 hour for regular pa-
tients to be completed according to the interviewed doc-
tors. Moreover, each contouring needs to be peer-
reviewed and approved by another doctor before the
process moves on to treatment planning. In the NKI this
step is done right after contouring, with the doctor in
charge asking a colleague to double check the contouring
on site. This extra step takes at most 60min. Therefore,

we have added 60min to the processing time of each con-
touring to account for the peer-review task. Standard pro-
cessing times for beam set-up and treatment planning
vary considerably per care trajectory, ranging from 60 (e.g.
bone metastasis) to 120 (e.g. breast) minutes for a beam
set-up, and from 150 (e.g. prostate) to 960 (e.g. head-and-
neck) minutes for treatment planning.

Model verification
The model was built iteratively in constant interaction
with managers and clinicians from the RT department
of the NKI. Components of the model as described in
“model inputs”, such as patient arrivals generators, staff
management tools, and processing units were added step
by step after conducting interviews with the staff mem-
bers of the NKI responsible for that step. The scheduling
routines and simplifications introduced in each process
were carefully discussed and approved by the manager
in charge of the corresponding process.

Performance metrics
The most important Key Performance Indicators (KPIs)
to evaluate the performance of our model are related to
timeliness: the waiting times (in calendar days) and the
percentage of patients breaching the waiting time tar-
gets. Maximum waiting time targets defined by the
Dutch Society for Radiation Oncology [11] state that
acute patients should be treated within 1 day, subacute
patients should start treatment within 10 calendar days,
and regular patients should start treatment within 28
days. In addition, we also look at the percentage of first
fraction rebooks, i.e. the percentage of (pull) patients
that have their start of treatment postponed as the pre-
treatment phase cannot be completed in due time.

Warm-up period and number of replications
Since the model starts in an empty state with no queues
and idle resources, we introduced a warm-up period by
running the model for one-year data to assess the time
needed for the resources to be occupied and the queues
filled up. By measuring the evolution of patients’ waiting
times over time, the warm-up analysis showed that a
steady state is achieved at around 130 days (see Fig. 4).
Therefore, during the 130 first simulation days of our
computational experiments, output measurements are
not included in the results. The 130-day warm-up period

Table 4 Statistical analysis of IPP tasks: processing times for both CT-Warping and Scanning-Image registration follow a lognormal
distribution (p-value > 0.05)

Time Sample Size Prob. Dist. Mean (SD) p-value

CT – Warping 608 Lognormal 0.4 (0.6) 0.35

Scanning-Image registration 1306 Lognormal 0.1 (1.0) 0.60
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runs before the simulation run length of 365 days, which
corresponds to the year 2017.
In order to find the proper number of replications, we

performed several computational experiments with a dif-
ferent number of replications (n = 2,3,4, …) until the
relative error of the halfwidth of the confidence interval
of the average waiting times (x) measured across n was
sufficiently small (γ′ < 0.05), according to Eq. (1). Since
the sample size (number of replications) is small and
thus the real variance is unknown, we use a student’s
t-distribution to estimate the confidence interval of x for
the corresponding number of replications n being tested.
The halfwidth of the confidence interval is therefore ob-
tained by tn−1;1−α=2 � s

ffiffi

n
p , with s being the variance of the

waiting times for n replications, and tn − 1, 1 − α/2 being
the percentile of the Student-t distribution for n − 1 de-
grees of freedom at t1 − α/2 for a confidence level (1-α).
In our experiments, since we consider a 95% confidence
level, thus we set α = 0.05.

tn−1;1−α=2 � SDffiffiffinp
x

< γ
0 ð1Þ

By measuring the relative error according to the left-
hand side of Eq. (1) for each replication number (n = 2,3,
4, …), we found that the relative error was smaller than
γ′ = 0.05 for n = 15 replications, with a relative error of
0.048. Therefore, we decided to run 15 replications of
each computational experiment in our case study.

Workflow control analysis
To test the impact of increasing the number of patients
being scheduled with a pull strategy starting from the
baseline case, we gradually added subpopulations of pa-
tients based on tumor sites to the current pool of pa-
tients being scheduled with a pull strategy. The more
complex the pre-treatment process of a patient is, the
higher the uncertainty regarding the time needed to
complete pre-treatment. Therefore, we started adding
patients from the simplest to the most complex tumor
types in terms of treatment preparation.

Scenario analysis
In conjunction with the workflow control analysis, we
have investigated the impact of additional interventions
that may lead to performance improvements in the NKI.
The following scenarios were tested on the baseline case
(i.e. with only 40% pull patients):

1. Spreading consultation slots throughout the week:
We tested the impact of spreading the consultation
time slots over the week by setting the same patient
arrival mean on every weekday per care trajectory.
The overall mean arrival rate, per care trajectory,
remains constant.

2. No pre-allocated time slots for CT: We tested
the impact of removing the pre-allocated slots from
the CT tactical plan, by allowing full flexibility to
schedule any patient in any available slot as they arrive.
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3. Balancing doctor availability for contouring:
We re-arranged the doctors’ agenda such that each
doctor is available for contouring for (at least)
2 h a day, while working the same number of hours
per week.

4. P3 planners can process lung and chest wall
patients: We studied the influence of having P3
planners capable of performing treatment planning
of lung and chest wall patients (16.4% increase), in
addition to the current tumor sites (rectum,
prostate, and breast).

5. One more full-time P4 planner: we evaluated the
possible gain in waiting times by having one more
planning RTT of level P4 (thus capable of
performing P4, P3, and P2).

Results
For model validation, we have compared several outputs
of the model for the baseline case with the clinical per-
formance regarding the main KPIs that could be mea-
sured in practice for the year 2017 (Table 5). We verify
that the total average waiting time (WT) output by the
DES model (7.8 days) is very close to the one measured
in the actual system, i.e. in the NKI practice (7.9), with
the actual system value falling within the 95% confidence
interval of the DES model. A similar behavior is ob-
served for the pull and push patient trajectories, with
pull patients having lower overall waiting times than
average, as in current practice most of these patients are
subacute. Regarding the timeliness target fulfillment, the
model outputs an average of 85.13 patients breaching
their targets, below the value observed in practice (92).
Moreover, generated input data, including patient arrival
histograms, care content, urgency level and process
times, have been compared and found to be consistent
with the historical data. The outcomes measured in the
actual system and the output values obtained by the
model were considered close enough to regard the DES
model as a close representation of the actual system be-
havior, and therefore validated. The final DES model
and corresponding outcomes therefore served as the
baseline case for running the computational experiments
previously described.

Figure 5 shows the effect of increasing the number of
pull patients on the overall waiting times. The grey boxes
indicate the 95% confidence interval of the average, while
the whiskers represent the minimum and maximum
values found over the 15 replications. Results show that
with the increase of pull patients, the waiting times tend
to slowly increase, ranging from 7.8 on the baseline case
to an 8.9 maximum, when all patients are scheduled on a
pull way. Nevertheless, the addition of some tumor sites
like lung or prostate, to a pull strategy, do not impact
waiting times considerably. Figure 6 shows the evolution
of the number of patients breaching the national waiting
time targets: 1 day for acute patients, 10 days for subacute,
and 28 days for regular. Overall, the number of breaching
patients tends to decrease with the use of a pull strategy.
The average number of patients starting treatment after
their due date goes down from 87.7 to 51.9, with the max-
imum topping at 118 patients over all replications when
all patients are scheduled on a pull fashion. Figure 7 shows
how a pull strategy affects number of first fraction
rebooks, i.e. when the pre-treatment workflow cannot be
completed before the pre-scheduled date. The more pull
patients, the more rebooks occur, with an increase from
69.5 (baseline) to 132.7 (all) in the average number of
occurrences.
Table 6 shows the results of the scenario analysis. Bal-

ancing the consultation slots had the greatest impact on
the performance, by decreasing waiting times from 7.8
to 6.2 days (20.8%) while providing a reduction in the
number of patients breaching their waiting time targets
from 88 to 23 (74%). Similarly, by not having a pre-
allocation of time slots in the CT scanners results show
that lower waiting times (17.3%) and fewer patients
breaching their targets (57.8%) could be achieved. As for
treatment planning, results indicate that performance
would modestly improve by either having P3 planners
doing lung and chest wall patients (1.6%) or hiring an
extra P4 full-time planner (1.4%). Balancing the doctors’
time available for contouring throughout the week has
shown not to improve performance, providing the same
average waiting time as the baseline case.

Discussion
We have developed a discrete-event simulation model to
assess the optimal balance between two different strat-
egies for patient scheduling in RT: pull (schedule at first
consultation) and push (schedule after treatment plan-
ning), based on the actual system data of the NKI. Re-
sults showed that increasing the pull strategy from 40 to
100% reduces the number of patients starting treatment
after the WT target date from 87.7 to 51.9 (Fig. 6), on
average. By setting a start of treatment right at the be-
ginning of the process, the control over the work-in-
progress obviously increases and there is a lower risk of

Table 5 Comparison between the clinical performance and the
DES model for validation purposes

Performance metric Actual system DES model
(95% conf. interval)

Waiting time (total) 7.9 7.8 (7.5, 8.1)

Waiting time (pull) 5.9 5.6 (5.4, 5.9)

Waiting time (push) 9.7 9.7 (9.4, 10.0)

No. patients breaching WT target 92 87.7 (68.1, 107.4)
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Fig. 5 Box plot of the average waiting time (days) for different percentages of patients being scheduled in a pull manner for the workflow
control analysis

Fig. 6 Box plot of the average number of patients starting treatment after the desired waiting time for different percentages of patients being
scheduled in a pull manner for the workflow control analysis
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having delayed patients. This can be achieved at a cost
of a maximum of 1 day increase in the average waiting
times (Fig. 5). A push strategy, by allowing work to flow
continuously throughout the RT chain, provides up to
1.1 days reduction in the average waiting times. How-
ever, in moments of high workload and/or reduced staff
availability while using a push system, some patients
may have to wait longer than desired and consequently
breach their WT target date, which can be mitigated by
a pull strategy. As expected, the percentage of first ap-
pointment rebooks gradually increases with a pull strat-
egy, due to non-completion of the pre-treatment phase
on time to a maximum of 2.7% (Fig. 7). Moreover, we
have found that applying a pull strategy for certain
tumor sites has greater impact on performance than for
others. For instance, by adding prostate, brain and head-
and-neck patients to the pull group, we verified that
waiting times remained constant while the number of
breaching patients slightly decreased. This may indicate

that there is enough capacity in the department to ac-
commodate these patients working on a pull strategy
without increasing waiting times. In fact, the process of
increasing the number of patients working on a pull
fashion can be gradual. For instance, by scheduling all
breast patients in addition to the baseline case, thus in-
creasing the total number of pull patients from 40 to
60%, may allow achieving a 17.3% decrease on patients
breaching the waiting time targets, with an increase on
the average waiting time (6.4%) and the number of first
appointment rebooks (11.5%).
A scenario analysis of possible interventions per-

formed on the baseline case (40% pull patients) has
shown that distributing consultation time slots evenly
throughout the week has the highest impact on the mea-
sured performance. As shown in Table 6, by spreading
consultations slots evenly over the week and thus keep-
ing workload less variable throughout the chain, average
waiting times can potentially decrease from 7.8 to 6.2

Fig. 7 Box plot of the average number of start of treatment rebooks for different percentages of patients being scheduled in a pull manner for
the workflow control analysis

Table 6 Results of the scenario analysis for the baseline case (i.e. 40% pull patients)

Scenario Average WT days (95% CI) # patients breaching WT target (95% CI) # first fraction rebooks (95% CI)

Baseline (DES model) 7.8 (7.5, 8.1) 87.7 (68.1, 107.4) 69.5 (65.9, 73.2)

Spread consultation slots over the week 6.2 (6.1, 6.3) 22.5 (19.0, 26.0) 60.7 (56.4, 65.1)

No pre-allocation for CT 6.4 (6.4, 6.5) 37.1 (31.8, 42.4) 65.6 (62.4, 68.8)

Balance doctor availability for contouring 7.8 (7.5, 8.0) 80.9 (66.1, 95.6) 76.9 (73.4, 80.5)

Increase automated planning by 16.4% 7.7 (7.4, 7.9) 74.2 (61.0, 87.4) 67.5 (62.9, 72.2)

One more full-time P4 planner 7.7 (7.4, 7.9) 77.3 (62.3, 92.4) 64.3 (60.3, 68.2)
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days. Although we understand that this may not be
straightforward to implement due to the complex doctor
schemes and busy agendas, it is an insight that may en-
courage decision makers to strive for consultation slots
spread throughout the week as much as possible for each
specialty. In addition, by not having pre-allocated time
slots for CT scheduling the average waiting times and
number of patients breaching the targets can potentially
decrease by 12.7 and 57.8%, respectively (see Table 6).
However, since most of the allocated time slots are dedi-
cated to acute and bone metastasis patients, the impact on
delays of these patient types would need to be further ex-
plored before an actual implementation. Our findings also
showed that spreading the availability of doctors to per-
form contouring over the week does not increase per-
formance, suggesting that the current doctors’ agenda is
well synchronized with the patient throughput for con-
touring. Moreover, our study showed that the increasing
the number of planning RTTs does not improve perform-
ance significantly when compared to other scenarios, as
the addition of an extra full-time RTT with the highest
skill level of planning provided a marginal decrease of
1.4% in waiting times and 11.9% in the number of patients
breaching the WT targets. Similarly, we found that up-
grading the skill level of P3 planners to perform lung and
chest wall patients did not impact results considerably
from a logistics point of view.
Despite all the insights obtained with the DES model,

there are a few limitations to our simulation study. The
model is not able to fully capture the behavior of clini-
cians, as they may for example stay at work longer than
expected to finalize certain tasks and avoid delaying the
process of more urgent cases or skip certain meetings to
do contouring when their clinical workload is high.
Given the lack of clinical data regarding these situations,
we overlook this possibility in the model. Moreover,
each treatment plan needs to be checked and approved
by a medical physicist before the first fraction is deliv-
ered. However, in the NKI a medical physicist is called
by the planning RTT right after completion of the treat-
ment plan. Therefore, there is no delay due to this step.
In addition, the treatment plan may need to be improved
or modified as a result of the medical physics check,
thus requiring extra time to complete the treatment
planning phase. We have overlooked these situations in
our model as they account for less than 1% of the cases.

Conclusions
A 100% pull strategy, in which patients are scheduled a
start of treatment right after consultation, provides in-
creased predictability on the fulfillment of waiting time
targets in detriment of a small increase in the average
waiting times when compared to a push strategy. These
findings are useful to support policy making in RT

regarding their workflow control strategies and help RT
centers achieve a desired service level within their re-
source constraints. Some centers may accept having
slightly longer waiting times if that means having their
patients informed about the start date for treatment date
right at consultation, thus decreasing the discomfort and
psychological distress associated with waiting for a date
to start treatment. Moreover, DES has proved to be a
powerful tool that provides an overview of the actual
system and can help RT managers find bottlenecks and
opportunities for performance improvement with re-
course to visualization tools. Managerial interventions
can be tested with little effort after a valid and robust
model has been constructed, and the consequences of al-
ternative input parameters can be quickly estimated.
As a follow up of this study, we want to implement

and test extending the number of patients being sched-
uled in a pull way in the RT department of the NKI (e.g.
all breast patients) and perform a pre-post performance
evaluation to verify whether our theoretical results hold
in practice. Furthermore, as the modeled processes and
the patient mix are standard among RT centers, the pro-
posed model can also be applied to other centers with a
similar workflow and resource schemes.
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