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Abstract

Background: The global age-adjusted mortality rate related to atrial fibrillation (AF) registered a rapid growth in the
last four decades, i.e., from 0.8 to 1.6 and 0.9 to 1.7 per 100,000 for men and women during 1990–2010, respectively. In
this context, this study uses convolutional neural networks for classifying (diagnosing) AF, employing electrocardiogram
data in a general hospital.

Methods: Data came from Anam Hospital in Seoul, Korea, with 20,000 unique patients (10,000 normal sinus rhythm
and 10,000 AF). 30 convolutional neural networks were applied and compared for the diagnosis of the normal sinus
rhythm vs. AF condition: 6 Alex networks with 5 convolutional layers, 3 fully connected layers and the number of kernels
changing from 3 to 256; and 24 residual networks with the number of residuals blocks (or kernels) varying from 8 to 2
(or 64 to 2).

Results: In terms of the accuracy, the best Alex network was one with 24 initial kernels (i.e., kernels in the first layer), 5,
268,818 parameters and the training time of 89 s (0.997), while the best residual network was one with 6 residual blocks,
32 initial kernels, 248,418 parameters and the training time of 253 s (0.999). In general, the performance of the residual
network improved as the number of its residual blocks (its depth) increased.

Conclusion: For AF diagnosis, the residual network might be a good model with higher accuracy and fewer parameters
than its Alex-network counterparts.
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Background
Heart disease is the leading cause of disease burden in the
world and Korea [1–6]. Cardiovascular disease accounted
for the greatest part of global mortality in Year 2013
(Y2013 hereafter), i.e., 32% (17 million) of 54 million
deaths in the world [1]. The global age-adjusted mortality
rate per 100,000 related to atrial fibrillation (AF), the most
common form of irregular heartbeat, registered a rapid
growth from 0.8 to 1.6 (or 0.9 to 1.7) for men (or women)
during 1990–2010 [2]. This global pattern is consistent
with its local counterpart in Korea. Heart disease was the
second cause of death in Korea for Y2016 (58.2 per 100,
000) [3] and the third cause of disease burden in the
nation for Y2010 (562 disease-adjusted life years per 100,
000) [4]. Indeed, hospitalization for AF in the nation

increased by 420% from 767 to 3986 per 1 million from
Y2006 to Y2015 [5].
In the context above, an increasing amount of research

has used deep neural networks to classify (diagnose) AF
and other types of arrhythmia, given their superior per-
formance compared to other machine learning methods
[6–12]. This line of research applied convolutional
neural networks (i.e., Alex, Residual) [6–10], their recur-
rent counterparts (i.e., long short term memory) [11] or
both [12] to achieve the accuracy range of 80–99% with
varying numbers of class numbers for electrocardiogram
data. Most of these studies employed public data such as
Massachusetts Institute of Technology-Beth Israel
Hospital (MIT-BIH) arrhythmia data. Also, more com-
parison might be needed for a variety of deep neural net-
works with different degrees of their depth (i.e., numbers
of their layers) and varying numbers of their kernels for
the diagnosis of arrhythmia.
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For this reason, this study used electrocardiogram
(ECG) data in a general hospital and various convolu-
tional neural networks for diagnosing arrhythmia. ECG
is a graph of heartbeat in voltage versus time recorded
by electrodes on the chest and the limbs. A normal ECG
wave consists of five parts, i.e., P (atrial contraction), Q
(downward deflection immediately before ventricular
contraction), R (the peak of ventricular contraction), S
(downward deflection immediately after ventricular con-
traction) and T (ventricular recovery) (Additional file 1:
Figure S1A). Its AF counterpart shows an irregular
pattern, for example, lacking a P part with an irregularly
irregular QRS part (Additional file 1: Figure S1B). These
ECG waves are arranged in a grid of four columns and
three rows, i.e., the first column for “limb leads” (or volt-
age differences measured by limb electronodes) [I, II, III
in Additional file 1: Figure S2], the second column for
“augmented limb leads” (or voltage differences measured
by limb electronodes with a different combination so
called Goldberger’s central terminal) [aVR, aVL, aVF in
Additional file 1: Figure S2] and the last two columns
for “precordial leads” (or voltage differences measured
by chest electronodes) [V1-V6 in Additional file 1:
Figure S2]. Based on the ECG data in a general hospital,
30 convolutional neural networks were applied and com-
pared in this study for the diagnosis of the normal sinus
rhythm (NSR) vs. AF condition: 6 Alex networks with 5
convolutional layers, 3 fully connected layers and the
number of kernels changing from 3 to 256; and 24
residual networks with the number of residuals blocks
(or kernels) varying from 8 to 2 (or 64 to 2).

Methods
Data came from Anam Hospital in Seoul, Korea, with
20,000 unique participants (10,000 NSR and 10,000 AF).
Preprocessing processes for the ECG data are shown in
Additional file 1: Figures S2A, B and C, i.e., removing

the background grid, selecting target signals and getting
numerical values, respectively. Here, selecting target sig-
nals consists of three sub-processes based on OpenCV
functions such as connectedComponents: (1) computing
connected components in a binary image with 8-
connectivity; (2) computing the bounding rectangle for
each connected component; and (3) selecting the com-
ponent whose bounding rectangle has the longest width.
In Tables 1 and 2, input dimensions and the number of
kernels are described for 30 convolutional neural net-
works (i.e., 6 Alex networks and 24 residual networks)
for the diagnosis of the NSR vs. AF condition in this
study: Alex 1–6 with 5 convolutional layers, 3 fully
connected layers and the number of kernels changing
from 3 to 256; and Residual 1–1 to Residual 4–6 with
the number of residuals blocks (or kernels) varying from
8 to 2 (or 64 to 2). The original Alex network, which
consists of 5 convolutional layers and 3 fully connected
layers with Rectified Linear Unit (ReLU) activation func-
tions, topped the 2012 ImageNet Large Scale Visual
Recognition Challenge and demonstrated its superior
performance over its traditional sigmoid activation
function counterparts [13]. In convolutional layers of the
Alex network, a kernel (or feature detector) slides across
input data and operates “convolution”, i.e., calculating
the dot product of its elements and their input-data
counterparts, detecting specific features of the input
data, e.g., the shape of a dog’s ear which differentiates it
from a cat.
Then, many scholars tried to improve the original Alex

network by deepening it (or adding more layers to it).
However, this attempt turned out to be futile given that it
brings back the old problem of gradient vanishing (the
gradient of the loss with respect to the weight becomes 0
quickly) [14]. For this reason, several scholars introduced
the original residual network with new features of residual
mapping and shortcut connection, which managed its

Table 1 Alex-Network Architecture: Input Dimension & Number of Kernels

Layer/Model Alex 1 Alex 2 Alex 3 Alex 4 Alex 5 Alex 6

Convolution (1, 500, 96)a (1, 500, 48) (1, 500, 24) (1, 500, 12) (1, 500, 6) (1, 500, 3)

Pooling (1, 250, 96) (1, 250, 48) (1, 250, 24) (1, 250, 12) (1, 250, 6) (1, 250, 3)

Convolution (1, 250, 256) (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8)

Pooling (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Convolution (1, 125, 384) (1, 125, 192) (1, 125, 96) (1, 125, 48) (1, 125, 24) (1, 125, 12)

Convolution (1, 125, 384) (1, 125, 192) (1, 125, 96) (1, 125, 48) (1, 125, 24) (1, 125, 12)

Convolution (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Pooling (1, 63, 256) (1, 63, 128) (1, 63, 64) (1, 63, 32) (1, 63, 16) (1, 63, 8)

Fully Connected (1024) (1024) (1024) (1024) (1024) (1024)

Fully Connected (1024) (1024) (1024) (1024) (1024) (1024)

Output (2) (2) (2) (2) (2) (2)
a(1, 500, 96) Input Dimension 1, Input Dimension 2, Number of Kernels
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considerable depth (e.g., 152 layers) and unprecedented
performance (i.e., the first place in the 2015 ImageNet
Large Scale Visual Recognition Challenge) at the same
time [15]. Residual mapping and shortcut connection are

a way of avoiding additional parameters and extra model
complexity both by using simpler residual functions in-
stead of their more complicated originals and skipping
one or more layers. These methods contributed for the

Table 2 Residual-Network Architecture: Input Dimension & Number of Kernels

Layer/Model Residual 1–1 Residual 1–2 Residual 1–3 Residual 1–4 Residual 1–5 Residual 1–6

Convolution (1, 1000, 64)a (1, 1000, 32) (1, 1000, 16) (1, 1000, 8) (1, 1000, 4) (1, 1000, 2)

Pooling (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Residual Block (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Residual Block (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Residual Block (1, 63, 512) (1, 63, 256) (1, 63, 128) (1, 63, 64) (1, 63, 32) (1, 63, 16)

Residual Block (1, 63, 512) (1, 63, 256) (1, 63, 128) (1, 63, 64) (1, 63, 32) (1, 63, 16)

Pooling (1, 1, 512) (1, 1, 256) (1, 1, 128) (1, 1, 64) (1, 1, 32) (1, 1, 16)

Output (2) (2) (2) (2) (2) (2)

Layer/Model Residual 2–1 Residual 2–2 Residual 2–3 Residual 2–4 Residual 2–5 Residual 2–6

Convolution (1, 1000, 64) (1, 1000, 32) (1, 1000, 16) (1, 1000, 8) (1, 1000, 4) (1, 1000, 2)

Pooling (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Residual Block (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Residual Block (1, 125, 256) (1, 125, 128) (1, 125, 64) (1, 125, 32) (1, 125, 16) (1, 125, 8)

Pooling (1, 1, 256) (1, 1, 128) (1, 1, 64) (1, 1, 32) (1, 1, 16) (1, 1, 8)

Output (2) (2) (2) (2) (2) (2)

Layer/Model Residual 3–1 Residual 3–2 Residual 3–3 Residual 3–4 Residual 3–5 Residual 3–6

Convolution (1, 1000, 64) (1, 1000, 32) (1, 1000, 16) (1, 1000, 8) (1, 1000, 4) (1, 1000, 2)

Pooling (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Residual Block (1, 250, 128) (1, 250, 64) (1, 250, 32) (1, 250, 16) (1, 250, 8) (1, 250, 4)

Pooling (1, 1, 128) (1, 1, 64) (1, 1, 32) (1, 1, 16) (1, 1, 8) (1, 1, 4)

Output (2) (2) (2) (2) (2) (2)

Layer/Model Residual 4–1 Residual 4–2 Residual 4–3 Residual 4–4 Residual 4–5 Residual 4–6

Convolution (1, 1000, 64) (1, 1000, 32) (1, 1000, 16) (1, 1000, 8) (1, 1000, 4) (1, 1000, 2)

Pooling (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Residual Block (1, 500, 64) (1, 500, 32) (1, 500, 16) (1, 500, 8) (1, 500, 4) (1, 500, 2)

Pooling (1, 1, 64) (1, 1, 32) (1, 1, 16) (1, 1, 8) (1, 1, 4) (1, 1, 2)

Output (2) (2) (2) (2) (2) (2)
a(1, 1000, 64), Input Dimension 1, Input Dimension 2, Number of Kernels
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original residual network to achieve a lower error than
and eight times as many layers as the Virtual Geometry
Group network, the winner of the 2014 ImageNet Large
Scale Visual Recognition Challenge, i.e., 3.57% and 152
layers, respectively.
This study modified the original Alex and residual net-

works by changing the input, output and kernel dimensions
from 224x224x3, 1000 (multi-class) and 3 (color image) to
1x2000x1, 2 (binary-class) and 2 (signal), respectively. All
ECGs were reviewed manually by two cardiologists in the
hospital. This retrospective study got approved by the Insti-
tutional Review Board of Korea University Anam Hospital
on February 12, 2018 (2018AN0037). Informed consent
was waived by the IRB given that data were de-identified.
Python 3.6 and Keras 2.2.2 with NVIDIA Titan Xp (12GB
RAM) were employed for the analysis on September 2018.

Results
Accuracy measures, epoch numbers and training time
for the 30 convolutional networks in this study are
displayed in Table 3. In terms of the accuracy, the best
network among Alex 1–6 was Alex 3 (0.997) with 24
initial kernels (i.e., kernels in the first layer), 5,268,818
parameters and the training time of 89 s while the best
network among Residual 1–1, …, Residual 4–6 was Re-
sidual 2–2 (0.999) with 6 residual blocks, 32 initial ker-
nels, 248,418 parameters and the training time of 253 s.

It is shown in Fig. 1 how the accuracy of the residual
network changes as the numbers of residual blocks and
initial kernels change. The performance of the residual
network improved as the number of its residual blocks
(its depth) increased. The results in Table 3 and Fig. 1
suggest that (1) the number of kernels might not be as
significant as that of residual blocks in the case of the
residual network and (2) the residual network might be
a good model for AF diagnosis with higher accuracy and
fewer parameters than its Alex-network counterparts.

Discussion
Main finding of this study
In terms of the accuracy, the best Alex network was one
with 24 initial kernels (i.e., kernels in the first layer), 5,
268,818 parameters and the training time of 89 s (0.997)
while the best residual network was one with 6 residual
blocks, 32 initial kernels, 248,418 parameters and the
training time of 253 s (0.999). In general, the perform-
ance of the residual network improved as the number of
its residual blocks (its depth) increased.

What is already known on this topic
An increasing amount of research has used deep neural
networks to diagnose AF and other types of arrhythmia,
given their superior performance compared to other
machine learning methods. This line of research applied

Table 3 Model Performance: Accuracy, Epoch Number and Training Time

Model Alex Net 1 Alex Net 2 Alex Net 3 Alex Net 4 Alex Net 5 Alex Net 6

Accuracy 0.9965 0.9960 0.9970a 0.9945 0.9950 0.9900

Epoch # 32 61 43 54 51 37

Time (Sec) 163 185 89 110 103 76

Model Residual 1–1 Residual 1–2 Residual 1–3 Residual 1–4 Residual 1–5 Residual 1–6

Accuracy 0.9975 0.9970 0.9980 0.9970 0.9980 0.9970

Epoch # 62 51 109 56 64 41

Time (Sec) 673 309 440 172 212 162

Model Residual 2–1 Residual 2–2 Residual 2–3 Residual 2–4 Residual 2–5 Residual 2–6

Accuracy 0.9975 0.9990b 0.9975 0.9975 0.9975 0.9940

Epoch # 104 50 41 58 30 28

Time (Sec) 896 253 167 177 93 87

Model Residual 3–1 Residual 3–2 Residual 3–3 Residual 3–4 Residual 3–5 Residual 3–6

Accuracy 0.9970 0.9980 0.9950 0.9955 0.9935 0.9900

Epoch # 40 55 44 42 39 44

Time (Sec) 322 278 178 129 119 133

Model Residual 4–1 Residual 4–2 Residual 4–3 Residual 4–4 Residual 4–5 Residual 4–6

Accuracy 0.9925 0.9935 0.9915 0.9905 0.9870 0.9590

Epoch # 26 41 44 43 68 85

Time (Sec) 158 166 134 89 139 173
aBest network with the highest accuracy among Alex 1–6
bBest network with the highest accuracy among Residual 1–1, …, 4–6
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convolutional neural networks (i.e., Alex, Residual), their
recurrent counterparts (i.e., long short term memory) or
both to achieve the accuracy range of 80–99% with vary-
ing numbers of class numbers for ECG data. Most of
these studies employed public data such as MIT-BIH
arrhythmia data.

What this study adds
Based on ECG data in a general hospital, this study used
more various convolutional neural networks and
achieved higher accuracy measures compared to the
existing literature for diagnosing arrhythmia as the basis
of clinical decision support [6–10]. Specifically, 30 con-
volutional neural networks were applied and compared
for the diagnosis of the NSR vs. AF condition with the
accuracy range of 99.00–99.99%: 6 Alex networks with
the number of kernels changing from 3 to 256; and 24
residual networks with the number of residuals blocks
(or kernels) varying from 8 to 2 (or 64 to 2). Eight cases
misspecified by the best residual networks in this study
are shown in Additional file 1: Figures S3A - H, e.g.,
Additional file 1: Figure S3A, AF misspecified as normal
by Residual 1–3, 1–4, 3–1 and 3–2. Indeed, six cases
specified correctly by all residual networks in this study
are shown in Additional file 1: Figures S3I- N. According
to these figures, it can be noted that convolutional
neural networks find some regular patterns human
experts miss. For example, it might be the case in
Additional file 1: Figure S3C that (1) the convolutional
neural network took four or five beats as a basic unit
and predicted the signal as NSR but (2) the human ex-
pert considered a single beat as a basic unit and made
an opposite diagnosis of AF. It will be an interesting and
important topic to understand better how deep neural
networks look at signal data and make a diagnosis.

Limitations of this study
Firstly, this study focused on binary diagnosis of the
NSR vs. AF condition. Expanding this study to other
arrhythmia conditions might add a great contribution to
this line of research. Secondly, comparisons between the
convolutional neural networks and their recurrent coun-
terparts in terms of model performance and training
time might expand the horizon of research on this topic.
Thirdly, a recent review indicates that the standardization
of ECG diagnostic criteria is expected to improve the
agreement of clinical experts and the performance of
computer algorithms regarding ECG interpretation [16].
Much more effort needs to be made in this direction,
given that even experienced clinical experts, the gold
standard, often disagree in their ECG interpretation.
Finally, this study used the training and test sets only.
Including the validation set (whose element is not pre-
selected into two rhythm types) might be an important
next step for advancing science and its clinical practice.

Conclusions
For AF diagnosis, the residual network might be a good
model with higher accuracy and fewer parameters than
its Alex-network counterparts.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12911-019-0946-1.

Additional file 1: Figure S1. Electrocardiogram Wave. A Normal. B
Atrial Fibrillation vs. Normal. The atrial-fibrillation rhythm in the top does
not have a P wave (purple arrow) of the normal rhythm in the bottom.
Figure S2. Preprocessing. A. Removing the Background Grid. B. Selecting
Target Signals. C. Getting Numeric Values. Figure S3. A. AF Misspecified
as Normal by Residual 1–3, 1–4, 3–1 and 3–2 (1/3). B. AF Misspecified as
Normal by Residual 1–1, 1–2, 1–3, 1–4, 1–6 and 2–5 (2/3). C. AF

Fig. 1 Residual Network: Accuracy over Numbers of Residual Blocks & Initial Kernels
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Misspecified as Normal by Residual 1–1, 1–2, 1–3, 1–4, 1–5, 1–6, 2–1, 2–2
and 3–2 (3/3). D. Normal Misspecified as AF by Residual 1–1, 1–2, 1–6, 2–
3 and 2–4 (1/5). E. Normal Misspecified as AF by Residual 1–1, 1–2, 1–5,
2–1, 2–2, 2–3, 2–4, 2–5 and 3–1 (2/5). F. Normal Misspecified as AF by Re-
sidual 1–1, 1–2, 1–3, 1–5, 2–1, 2–3, 2–4, 2–5, 3–1 and 3–2 (3/5). G. Normal
Misspecified as AF by Residual 1–2, 1–5, 2–1, 2–3, 2–5 and 3–1 (4/5). H.
Normal Misspecified as AF by Residual 1–4, 2–1, 2–3, 2–4, 2–5 and 3–1
(5/5). I. Normal Specified as Normal by Residual Networks (1/3). J. Normal
Specified as Normal by Residual Networks (2/3). K. Normal Specified as
Normal by Residual Networks (3/3). L. AF Specified as AF by Residual Net-
works (1/3). M. AF Specified as AF by Residual Networks (2/3). N. AF Spe-
cified as AF by Residual Networks (3/3).
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AF: Atrial fibrillation; ECG: Electrocardiogram; MIT-BIH: Massachusetts Institute
of Technology-Beth Israel Hospital; NSR: Normal sinus rhythm
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