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Abstract

Background: Sequence alignment is a way of arranging sequences (e.g., DNA, RNA, protein, natural language,
financial data, or medical events) to identify the relatedness between two or more sequences and regions of
similarity. For Electronic Health Records (EHR) data, sequence alignment helps to identify patients of similar disease
trajectory for more relevant and precise prognosis, diagnosis and treatment of patients.

Methods: We tested two cutting-edge global sequence alignment methods, namely dynamic time warping (DTW)
and Needleman-Wunsch algorithm (NWA), together with their local modifications, DTW for Local alignment (DTWL)
and Smith-Waterman algorithm (SWA), for aligning patient medical records. We also used 4 sets of synthetic patient
medical records generated from a large real-world EHR database as gold standard data, to objectively evaluate
these sequence alignment algorithms.

Results: For global sequence alignments, 47 out of 80 DTW alignments and 11 out of 80 NWA alignments had
superior similarity scores than reference alignments while the rest 33 DTW alignments and 69 NWA alignments
had the same similarity scores as reference alignments. Forty-six out of 80 DTW alignments had better similarity
scores than NWA alignments with the rest 34 cases having the equal similarity scores from both algorithms. For
local sequence alignments, 70 out of 80 DTWL alignments and 68 out of 80 SWA alignments had larger
coverage and higher similarity scores than reference alignments while the rest DTWL alignments and SWA
alignments received the same coverage and similarity scores as reference alignments. Six out of 80 DTWL
alignments showed larger coverage and higher similarity scores than SWA alignments. Thirty DTWL alignments
had the equal coverage but better similarity scores than SWA. DTWL and SWA received the equal coverage and
similarity scores for the rest 44 cases.

Conclusions: DTW, NWA, DTWL and SWA outperformed the reference alignments. DTW (or DTWL) seems to
align better than NWA (or SWA) by inserting new daily events and identifying more similarities between patient
medical records. The evaluation results could provide valuable information on the strengths and weakness of
these sequence alignment methods for future development of sequence alignment methods and patient
similarity-based studies.

Keywords: Patient similarity, Electronic health record, Sequence alignment, Temporal sequence, Dynamic time
warping, Needleman-Wunsch algorithm, Smith-Waterman algorithm
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Background
Patient similarity calculation has become an emerging
research topic. It identifies similar patients in a large
pool for healthcare insights on prognosis, diagnosis,
and treatment [1, 2]. For example, in case of a patient
with a rare or hard-to-diagnosed disease, identifying
patients with similar disease trajectory might expedite
the diagnosis and treatment and reduce patient suffer-
ing. In addition, patient similarity calculation is critical
to machine learning based prediction tasks such as
disease prognosis, medication outcomes and mortality
[3, 4]. We refer the readers to a few review papers for
patient similarity calculation and its implications for
precise medication [4–6].
When calculating and comparing patient similarity

from electronic health records (EHRs) data, we could
not bypass the issue of aligning the temporal event se-
quences [7]. Mathematically and computationally, EHR
of a patient can be viewed as a temporal sequence of
medical events. As illustrated in Fig. 1(A), patient A
and patient B do not look similar without properly
alignment first. Figure 1 (C), (D), (E) and (F) demon-
strate different strategies to align the temporal event
sequences of two patients. Patient similarity calcula-
tion with proper sequence alignment suggests a novel

solution to reserve temporal information in EHRs [8, 9].
Che et al. for first time deployed dynamic time warping
(DTW) to align temporal sequence when calculating pa-
tient similarity. They adopted a linear regression model
with a subset of patients that are most similar to a target
patient and achieved a better F1 score (77%) at predicting
the target patient’s Parkinson subtype, compared to the
same model using all patients (75%) [8].
DTW is a global sequence alignment method based

on dynamic programming. It finds an optimal match
between two sequences of feature vectors by stretching
and/or compressing one or more sections of one
sequence and is considered as the best alignment
method for various applications including speech rec-
ognition and video streaming [8]. Sequence alignment
is also extensively used in bioinformatics, in particu-
larly at comparing protein, DNA or RNA sequences to
identify regions of similarity that may be a conse-
quence of functional, structural or evolutionary rela-
tionships between the sequences. Needleman-Wunsch
Algorithm (NWA) is a widely used global alignment
algorithm for aligning protein, DNA or RNA se-
quences [10, 11]. In contrast to DTW which stretches
a section of a sequence and fills in missing events with
the adjacent event, NWA pads the missing events with

Fig. 1 An illustration demonstrating the significance of sequence alignment. (A) Two simplified temporal event sequences; (B) the scoring
function to calculate the pairwise patient similarity; global sequence alignment algorithms, DTW (C) and NWA (D); local sequence alignment
algorithms, DTWL (E) and SWA (F). The shapes with light blue and dash border are extra medical events inserted by DTW or DTWL during
sequence alignment. “_” is a gap spot inserted by NWA or SWA during sequence alignment. The different shapes (e.g., diamond, triangle and
circle) represent different medical events. J denotes Jaccard index
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gap as direct and deterministic penalization. Besides
global sequence alignments, local sequence alignments
are more useful to identify the similar sequence motifs
among not so similar sequences. Smith-Waterman
Algorithm (SWA) is a variation of NWA for local
sequence alignments [12]. SWA is broadly used for
determining similar regions between two nucleic acid
sequences or protein sequences [13, 14].
Considering the significance of temporal information

in medicine, we are curious to ask the question –
which type of sequence alignment method works best
for EHR data? Unfortunately, no objective and com-
prehensive evaluation and comparison between state-
of-art sequence alignment methods is available. There-
fore, we plan to compare the strengths and limitations
of both global and local sequence alignment methods
and evaluate their impact on patient similarity calcula-
tion. This is a challenging task for several reasons:
Firstly, patient medical records are complex [15–17].

We use the most structured and standardized EHR
data type – diagnosis to illustrate. There are thousands
of diagnosis codes, whereas DNA sequences have only
four types of nucleic acids and protein sequences con-
tain 20 types of amino acids. All the diagnosis codes
are documented in EHR in the same way, but their se-
mantic meaning can be very different. For instance, a
diagnosis code of diabetes on a certain date does not
mean diabetes only occurs at that specific time point.
Medically speaking, diabetes is not curable. Once a
person is diagnosed with diabetes, he or she will carry
diabetes for the rest of the life. Only under successful
management, diabetes can go into “remission” state.
However, influenza is more of an acute condition that
patient can recover from in a short period of time. The
data quality also varies. Some patients have a few lines
on their medical records, whilst others have thousands
of lines attributed to many clinical encounters. A long
period of gap in patient medical records can mean ei-
ther “healthy state” or missing. Such ambiguity is hard
to resolve without further information. Other EHR
data types, such as medications, procedures, lab tests,
and clinical notes are no less complicated.
Secondly, no gold standard data is available for

evaluating sequence alignment algorithms. One
solution is to ask experts, such as physicians to evalu-
ate and rank the results from different sequence align-
ment methods, which can be very subjective and
expensive. In this work, we propose to synthesize sim-
ulated patient medical records using seed patients
carefully chosen from a large real-world EHR database.
We will be able to design and control the differences
between sequences of medical records for objective
and comprehensive evaluation of sequence alignment
algorithms.

The rest of the paper is organized as the following
5 sections. In the Related Work section, we will
describe three global and local sequence alignment
algorithms, namely DTW, NWA and SWA. In the
Methods section, we will introduce the methods for
selecting seed patients from a large real-world EHR
database and for synthesizing more patient medical
records; the implementation of DTW, NWA, SWA
and DTWL, a modified DTW for local alignment;
and the metrics for evaluating sequence alignment
results. In the Results section, we will share and
analyze briefly the alignment results. In the Discussion
section, we will evaluate these sequence alignment
methods in details and illustrated various scenarios of
sequence alignments using simplified cases. We also
discuss the limitations of our work. In the end we
will conclude our work.

Related work
Dynamic Time Warping (DTW) is one of the leading
matching algorithms for globally aligning two temporal
sequences of different speeds and measuring similarity
[8, 18]. Specifically DTW determines the optimal align-
ment between two given temporal sequences based on
the following restrictions and rules:

� Every index in one sequence must match one or
more indices in the other sequence. The 1-to-n or
n-to-1 index matching denotes the warping in the
time dimension.

� The first indices in the two sequences must match.
� The last indices in the two sequences must match.
� The mapping of the indices in the two sequences

must be monotonically increasing.

Given two temporal event sequences of two patients X
([X1, X2, …, Xi, …, Xn]) and Y ([Y1, Y2, …, Yj, …, Ym]),
DTW calculates an accumulated score matrix A(n + 1) x

(m + 1) by updating the matrix element Ai, j according to
the following equation,

Ai; j ¼ f 0 i ¼ 0; j ¼ 0

−∞ i ¼ 0; j > 0

−∞ i > 0; j ¼ 0

maxðsðXi;Y jÞ þ Ai−1; j−1;

sðXi;Y jÞ þ Ai−1; j;

sðXi;Y jÞ þ Ai; j−1Þ
i > 0; j > 0

ð1Þ
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where s (Xi, Yj) denotes the distance between two ele-
ments Xi and Yj in the sequence of X and Y. In our ex-
periment, we define s (Xi, Yj) according to the scoring
system shown in Fig. 1(B).
DTW then tracks back from the matrix element A(n + 1),

(m + 1) to find the optimal alignment path by maximizing
the accumulated score in the accumulated score matrix.
Needleman-Wunsch Algorithm (NWA) was firstly de-

veloped by Saul B. Needleman and Christian D. Wunsch
in 1970 [10]. It was one of the first application of dy-
namic programming to align and compare protein and
nucleotide sequences. As a global alignment method,
NWA introduces a gap rather than warping and filling
in an adjacent element when aligning sequences. There-
fore, every index in one sequence matches another index
or a gap in the other sequence, and the monotonic in-
crease of the mapping indices is maintained.
Mathematically, given two temporal sequences of medical

events X ([X1, X2, …, Xi, …, Xn]) and Y ([Y1, Y2, …, Yj, …,
Ym]), NWA calculates an accumulated score matrix
A(n + 1) x (m + 1) by updating the matrix element Ai, j

according to the following equation,

Ai; j ¼ f 0 i ¼ 0; j ¼ 0

j�gp i ¼ 0; j > 0

i�gp i > 0; j ¼ 0

max ðAi−1; j−1 þ sðXi;Y jÞ;
Ai−1; j þ gp;

Ai; j−1 þ gpÞ
i > 0; j > 0

ð2Þ

Where gp stands for a gap penalty; s (Xi, Yj) denotes
the simialrity between two elements Xi and Yj in the
sequence of X and Y, and is calculated using a scoring
system shown in Fig. 1(B).
NWA also identifies an optimal alignment path

relative to a given scoring system including gap pen-
alty by tracking back from the matrix element A(n + 1),

(m + 1) and maximizing the accumulated scores along
the path.
Smith-Waterman Algorithm (SWA) is a local se-

quence alignment algorithm developed by Temple F.
Smith and Michael S. Waterman in 1981 [12], which is a
variation of NWA for local sequence alignment. SWA has
been commonly used for aligning biological sequence,
such as DNA, RNA or protein sequences [13, 14].
Given two temporal sequences of medical events X

([X1, X2, …, Xi, …, Xn]) and Y ([Y1, Y2, …, Yj, …, Ym]),
SWA calculates an accumulated score matrix A(n + 1) x

(m + 1) by updating the matrix element Ai, j according to
the following equation,

Ai; j¼f 0 i ¼ 0 or j ¼ 0

max ðAi−1; j−1 þ sðXi;Y jÞ;
Ai−1; j þ gp;

Ai; j−1 þ gp;

0Þ

i > 0; j > 0

ð3Þ

Where gp stands for a gap penalty; s (Xi, Yj) denotes
the similarity between two elements Xi and Yj in the
sequence of X and Y, and is calculated using a scoring
system shown in Fig. 1(B).
The main difference from NWA is that the matrix

element with negative accumulated score is set to zero,
which is used to mask certain mismatched alignments
and render locally matched alignments visible. Sequen-
tially, by starting at the element with the highest
accumulated score, the algorithm identifies the local
alignment path with the highest similarity by tracking
back and choosing the path affiliated with maximal ac-
cumulated score until the matrix element with an accu-
mulated score of zero is encountered. The algorithm is
also guaranteed to find the optimal local alignment with
respect to the predefined scoring system.

Methods
Real-world EHR database
The Rochester Epidemiology Project (REP) was estab-
lished in the mid-1960s by Dr. Leonard T. Kurland
[19–21]. In 2016, the REP contained approximately 2
million patient records from 54 different health care pro-
viders that matched to more than 577,000 individuals who
had been residents of Olmsted County at some point be-
tween 1966 and 2016. The REP includes demographic
data and comprehensive coded information about medical
diagnoses, hospital admissions, surgical procedures, pre-
scriptions, laboratory test results, and smoking and body
mass index information. Thus it contains complete patient
medical records from their outpatient (office visit, urgent
care, emergency room) to hospitalization contacts across
all local medical facilities, regardless of where the care was
delivered or of insurance status. Investigators are able to
conduct long-term, population-based studies of disease in-
cidence, prevalence, risk and protective factors, outcomes,
health services utilization, and cost-effectiveness. The ver-
sion of REP database we used in this project is a cut from
original database with all patient medical records for the
period of 1995–2015.
Without loss of generality, we only considered diagno-

sis information in this project. This is because all other
information in EHRs, such as medications, procedures,
lab tests, and clinical notes have dependency on diagno-
ses. No medications, procedures, lab tests and clinical
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notes can be easily synthesized to meaningfully simulate
real world situations, without considering their depend-
ency on diagnoses and the underlying medical rational.
REP database uses the International Classification of

Diseases, Ninth Revision, Clinical Modification (ICD-
9-CM) [22] to code diagnosis. ICD-9-CM has refined
coding granularity to classify and group diseases and
medical conditions and has been primarily used for
billing purpose in the United States. As our purpose in
this project is to evaluate various sequence alignment
approaches for patient similarity calculation and pre-
dictive modeling, we first aggregated the ICD-9-CM
codes to the PheCode [23]. PheCode represents a
granularity of disease concepts that is closer to clinical
practice and has proven to have better performance in
various data mining tasks [24–26]. We further grouped
the diseases defined by PheCode using the digits before
the period (.) of PheCode to capture broader disease
categories. For example, the code “195.1” was chunked
to “195” and consolidated into the “195” category. In
total, 14,335 diseases and medical conditions defined
by ICD-9-CM in the REP database were grouped into
582 diseases and medical conditions.

Synthesis of patient medical records
Selection criteria of patient medical records
Medical care is highly specialized, complicated and
heterogenous. As shown in Table 1, on a single day, a
patient may have one or more visits to a clinic, a hospital
or other types of healthcare facilities. The diagnosis in-
formation observed in most EHR databases would be a
list of diagnosis codes for a given date without specifying
the order of the events, which we call a daily event. In
order to sample representative patients from the REP
database and synthesize patient medical records that
simulate real world situations, we consider the following
characteristics of patient medical records:

(1) Multiple scenarios of patient clinical encounters on
a single day, including the number of visits per day
(single vs. multiple) and the number of diagnosis in
each encounter (single vs. multiple);

(2) The nature of diseases. Acute diseases on patient
medical records can be considered as an event on a
specific time point, whereas chronic diseases cover
a longer time span. It is hard to infer or reconstruct
the time span for each disease in patient medical
records without medical knowledge;

(3) The lengths of medical records of different patients
vary significantly (See Fig. 2). Relocation, job and
medical insurance plan changes all impact the
lengths of patient medical records.

Therefore we considered the following three criteria
when selecting seed patients for synthesizing patient
medical records:
The patient medical records should contain the (i),

(ii), and (iv) scenarios in Table 1. (iii) is nice to have,
but not required for inclusion, because it is theore-
tically possible but practically extremely rare. In
medicine, if a patient have multiple visits on the same
day, it usually represents complicated situation with
multiple diagnoses (e.g., primary and secondary
diagnoses).
The selected patient must have both acute and chronic

diseases on his or her medical records. We chose influenza
and type II diabetes as representatives of acute and chronic
diseases in this evaluation. Overall, we found that 3191 pa-
tients in the REP database meeting the first two criteria.
The patient medical records in the REP database

have a wide range of length, in terms of total daily
events. Figure 2 shows the distribution plot for the
3191 patients that satisfy both criteria (1) and (2). The
mean and standard deviation of total daily events of
these patients are 233.6 and 217.7, respectively. The
patient count reaches its maximum when the total

Table 1 Different scenarios of patient clinical encounters on a single day

Daily event Medical scenario Diagnosis recorda

Single visit on a single day (i) Single diagnosis A patient went to see a primary care
doctor and received a single diagnosis.

01/01/2019b: Influenza

(ii) Multiple diagnoses A patient went to see a primary care
doctor and received multiple diagnoses.

01/01/2018: Influenza | Pneumonia

Multiple visits on a single day (iii) Single and same diagnosis for
multiple visits

A patient went to see a primary care
doctor and then got transferred to
Emergency Room immediately.

01/01/2019: Acute myocarditis

01/01/2019: Acute myocarditis

(iv) Multiple diagnoses for
multiple visits

A patient went to see a primary care
doctor for flu. He also visited an
endocrinologist for a routine follow-up
for type II diabetes.

01/01/2019: Influenza with pneumonia |
Acute myocarditis

01/01/2019: Type II diabetes | Benign
essential hypertension

aFor better readability, the diagnosis codes are not listed
b01/01/2019 is a hypothetical date used for illustrative purpose
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number of daily events is around 84. Accordingly, we
selected four seed patients (the orange dots in Fig. 2),
as their numbers of total daily events (9, 84, 224, and
458, respectively) spread out along the distribution.

Synthesis methods of patient medical records
We adopted three types of operations, namely deleting,
updating and switching on the medical records of four
selected seed patients at the level of daily event and
event block (multiple daily events). Table 2 describes
them in more details. In the context of sequence align-
ment, the operation of inserting in one sequence is
equivalent to deleting in another sequence, so we only
kept the latter. In the end, we synthesized 20 new pa-
tient medical records by applying one or more deleting,
updating and switching operations, for each of the 4
seed patients. The second column of Tables 3 and 4 spe-
cified the operations we performed. The size of event
block is determined by the maximum of (2, N/10), where
N is the number of daily events for a seed patient.

Implementation of sequence alignment algorithms
We implemented DTW, NWA and SWA in python and
the function module for each algorithm consists of two
components: (1) Calculation of accumulated score
matrix A(n + 1) x (m + 1) (2) Tracking back to identify an
optimal alignment path. In addition, we also imple-
mented a modified algorithm of dynamic time warping
for local sequence alignment (DTWL) based on SWA.
More specifically, given two temporal sequences of

medical events X ([X1, X2, …, Xi, …, Xn]) and Y ([Y1, Y2,
…, Yj, …, Ym]), DTWL calculates an accumulated score
matrix A(n + 1) x (m + 1) by updating the matrix element Ai,

j according to the following equation,

Ai; j ¼ f 0 i ¼ 0 or j ¼ 0

maxðsðXi;Y jÞ þ Ai−1; j−1;

sðXi;Y jÞ þ Ai−1; j;

sðXi;Y jÞ þ Ai; j−1;

0Þ

i > 0; j > 0

ð4Þ

Fig. 2 The distribution of medical record length in terms of count of unique dates for patients with influenza (acute disease) and type II diabetes
(chronic disease), and with three or more types of clinical encounters on a single day (specified in Table 1) in the REP database

Table 2 Operations of Deleting, Updating, and Switching on Daily Event and Multi-day Event Block

Operation Level

Daily event Event block

Deleting Deleting a daily event Deleting multiple consecutive daily events

Updating Randomly changing a diagnosis in a daily event or
randomly removing a diagnosis if the total number of
diagnosis in a daily event is > 1

Changing a block of daily events

Switching Switching all the diagnoses in two randomly
selected daily events

Switching all the daily events between two
selected daily event blocks of same length
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Where s (Xi, Yj) denotes the similarity between two
elements Xi and Yj in the sequence of X and Y, and is
calculated using a predefined scoring system as shown in
Fig. 1(B).
During the calculation of accumulated score matrix,

DTWL sets the matrix element with negative accumu-
lated score to zero and make them invisible. After that,
DTWL tracks back from the matrix element with the
highest score until encountering zero to identify the op-
timal alignment path.

Metrics for patient similarity
We adapted the scoring system commonly used in the
biological sequence alignment shown in Fig. 1(B) to
measure the similarity between two aligned daily events.
In this scoring system, the score of matching is set to 1
as a reward. It also assigns the same score of − 1 to both
mismatching and gap situations as a penalty. For two
daily events (X and Y) involving multiple codes, we used
Jaccard index J(X,Y) to measure their similarity s(X,Y) as
follows,

sðX;Y Þ ¼ 2 JðX;Y Þ−1 ð5Þ

J X;Yð Þ ¼ X∩Yj j
X∪Yj j ð6Þ

We also penalized similarity between an original daily
event in a patient sequence and an extra daily event
inserted into another patient sequence by DTW or
DTWL by setting score range between −1 (mismatching)
and 0 (matching). In other words, the similarity s(X,Y)
between them is defined as,

s X;Yð Þ ¼ J X;Yð Þ−1 ð7Þ
For global sequence alignments, we calculated the

similarity score of aligned sequences by summing all the
similarity scores s(X,Y) of aligned daily events. Due to
the variation of daily event number in patient sequences,
we further normalized the similarity score of aligned se-
quences by dividing the total number of daily events in
the seed patient sequence. We used Sn to denote the
normalized similarity score of aligned sequences.
For local sequence alignments, we calculated the nor-

malized similarity score (Sn) and coverage (C) of the lon-
gest aligned subsequences between seed patient and
synthetic patient. Sn is the summation of the similarity

Table 3 Similarity scores of pairwise global sequence alignments

ID Operation Seed Patient 1 (N = 9) Seed Patient 2 (N = 84) Seed Patient 3 (N = 224) Seed Patient 4 (N = 458)

DTW NWA REF DTW NWA REF DTW NWA REF DTW NWA REF

1 x 0.819 0.778 0.778 0.980 0.976 0.976 0.991 0.991 0.991 0.998 0.996 0.996

2 x x 0.597 0.556 0.556 0.976 0.952 0.952 0.987 0.982 0.982 0.994 0.991 0.991

3 u 0.852 0.852 0.852 0.988 0.988 0.988 0.996 0.996 0.996 0.996 0.996 0.996

4 u u 0.714 0.714 0.714 0.952 0.952 0.952 0.984 0.984 0.984 0.993 0.993 0.993

5 s 0.556 0.556 0.556 0.952 0.952 0.952 0.991 0.991 0.991 0.991 0.991 0.991

6 s s 0.286 0.286 0.175 0.905 0.905 0.905 0.988 0.988 0.988 0.983 0.983 0.983

7 x u 0.556 0.556 0.556 0.964 0.952 0.952 0.988 0.987 0.987 0.993 0.991 0.991

8 x s 0.611 0.556 0.556 0.929 0.929 0.929 0.978 0.973 0.973 0.989 0.987 0.987

9 u s 0.457 0.457 0.457 0.929 0.929 0.929 0.981 0.981 0.981 0.987 0.987 0.987

10 x u s 0.363 0.289 0.289 0.905 0.905 0.905 0.969 0.964 0.964 0.984 0.983 0.983

11 X 0.590 0.556 0.556 0.869 0.810 0.810 0.877 0.804 0.804 0.821 0.808 0.808

12 X X 0.179 0.111 0.111 0.702 0.667 0.667 0.708 0.625 0.625 0.657 0.633 0.633

13 U 0.667 0.667 0.667 0.821 0.821 0.821 0.832 0.832 0.832 0.831 0.831 0.831

14 U U 0.551 0.551 0.551 0.786 0.786 0.786 0.711 0.709 0.709 0.695 0.695 0.695

15 S 0.401 0.333 0.160 0.637 0.631 0.631 0.729 0.700 0.679 0.623 0.622 0.622

16 S S 0.078 0.000 −0.269 0.319 0.310 0.310 0.405 0.393 0.351 0.278 0.266 0.262

17 X U 0.185 0.185 0.185 0.702 0.676 0.676 0.679 0.668 0.668 0.716 0.704 0.704

18 X S −0.204 −0.289 −0.333 0.539 0.530 0.530 0.577 0.552 0.495 0.509 0.501 0.474

19 U S −0.204 −0.204 −0.204 0.526 0.518 0.518 0.689 0.685 0.664 0.646 0.640 0.636

20 X U S −0.530 − 0.530 − 0.530 0.611 0.592 0.592 0.571 0.536 0.528 0.627 0.624 0.624

a. ID is the synthetic patient index. N is the number of daily events in a seed patient sequence
b. DTW, NWA and REF refer to as Dynamic Time Warping, Needleman-Wunsch Algorithm, and baseline reference, respectively
c. The lower case letters “x”, “u”, and “s” denote deleting, updating and switching a daily event, respectively. The upper case letters “X”, “U”, and “S” stand for
deleting, updating and switching multi-day events (event block)
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scores s(X,Y) of daily events in the aligned subsequences
and then is divided by the total number of daily events
in the seed patient sequence. C is coverage of the seed
patient sequence aligned to the synthetic patient se-
quence. Specifically, C is the ratio of the number of daily
events in the seed patient sequence aligned to a syn-
thetic patient sequence and the total number of daily
events in the seed patient sequence.

Results
Pairwise global sequence alignment results
We synthesized 80 (4 × 20) patient medical records by
performing the operations of deleting, updating and
switching a daily event or a multi-day event block on the
four seed patient records. We then performed global se-
quence alignment between each seed patient and each
synthetic patient.
Table 3 lists the similarity scores of pairwise global se-

quence alignments from DTW and NWA on top of the
medical records of each of the four seed patients and
those of their corresponding synthetic patients. The re-
sults from DTW and NWA are compared with baseline
references (REF).
We found that the similarity scores of DTW align-

ments were as good as, or even better than those of
reference alignments. Particularly 47 out of 80 align-
ments made by DTW had even higher similarity scores
than reference alignments. In addition, DTW alignments
were better than NWA alignments on 46 cases out of
80, with the rest 34 cases having the equal similarity
scores from both algorithms.
The NWA alignments also received better similarity

scores than reference alignments − 11 out of 80 NWA
alignments had superior similarity scores than reference
alignment while the rest 69 had the same distance scores
as reference alignment.

Pairwise local sequence alignment results
After synthesizing 20 patient medical records for each
out of 4 seed patients, we also performed local sequence
alignment between medical records of each seed patient
and each synthetic patient with DTWL and SWA to
identify the longest aligned subsequences. We then cal-
culated their similarity scores (Sn) and coverage (C) for
each pair of the longest aligned patient sequences. The
results are shown in Table 4, together with baseline ref-
erences (REF). Since C and Sn from baseline references
are identical, we only show one of them in Table 4. It
can be found that both coverage and similarity scores of
DTWL alignments were as good as, or even better than
those of reference alignments. Particularly 71 out of 80
alignments made by DTWL had even larger coverage
than reference alignments and 70 out of 80 DTWL
alignments had higher similarity scores than reference
alignments. In addition, DTWL alignments were better
than SWA alignments. More specially, 6 DTWL align-
ments showed larger coverage and higher similarity
scores than SWA alignments. 30 out of 80 DTWL align-
ments had the equal coverage but better similarity scores
than SWA. DTWL and SWA gave the equal coverage
and similarity scores for the rest 44 cases.
NWA alignments also received better coverage and

similarity scores than reference alignments. 69 (or 68)
out of 80 NWA alignments had superior coverage (or
similarity scores) than reference alignment while the rest
11 (or 12) had the same coverage (or similarity scores)
as reference alignment.

Discussion
We carefully examined the raw global and local align-
ment results from 4 × 20 sequence pairs and noticed
some subtle differences. We drew some cartoons in

Fig. 3 Scenarios of global sequence alignment: (a) Deleting, (b) Updating, and (c) Switching. REF, DTW, and NWA refer to as reference alignment,
alignment with Dynamic Time Warping, and alignment with Needleman-Wunsch Algorithm, respectively. In each pair, seed sequence is listed on
the top and aligned synthetic sequence is listed on the bottom. The similarity scores (Sn) between seed sequence and synthetic sequence are
also listed on the right side of each pair
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Figs. 3 and 4 to illustrate and discuss global alignments
and local alignments, respectively.

Pairwise global sequence alignment results
In Fig. 3(a), the reference alignment had a deletion, com-
pared to the seed sequence, thus it received a similarity
score of 0.50. NWA was able to insert a gap spot in the
synthetic sequence for better alignment. The resulting
alignment still received a similarity score of 0.50. However,
the gap spot was inserted at a different position compared
to reference alignment, which suggests there might be
more than one alignment solutions. In contrast, DTW
was able to stretch the synthetic sequence and insert a tri-
angle daily event in the right position, so that the align-
ment result was identical to the seed sequence, which led
to a similarity score of 0.75. As shown in Table 3 (the 1st,
2nd, 11th, and 12th rows), among 16 alignments between
4 seed patients and 4 synthetic patients created by only
deleting operations, similarity scores of NWA alignments
were the same as those of reference alignments. However,
15 out of 16 DTW alignments obtained higher similarity
scores than NWA alignments, for example, the alignment

between the 3rd seed patient and the 12th synthetic
patient. This high similarity scores can be attributed to
the fact that DTW uses the adjacent event to fill a gap
position in a sequence.
The reference alignment shown in Fig. 3(b) had a daily

event updating that the 2nd triangle daily event was re-
placed by a trapezoidal daily event. Thus, the distance
score of the reference alignment was 0.50. Both DTW
and NWA created the same alignments as the reference
alignment. Among 16 alignments between seed patients
and synthetic patients from only updating operations
(the 3rd, 4th, 13th, and 14th rows in Table 3), 15 DTW
or NWA alignments were identical to the reference
alignments, for instance, the alignment between the 2nd
seed patient and the 3rd synthetic patient.
In Fig. 3(c), the reference alignment contained a switch

of two adjacent events (the triangle and the trapezoidal)
and the corresponding similarity score was 0.0. NWA
inserted a gap into both the seed sequence and synthetic
sequence. The new sequence therefore became more
similar to the seed sequence than the reference align-
ment (3 identical aligned daily events out of 5 vs. 2

Fig. 4 Scenarios of local sequence alignment: (a, b) Deleting, (c, d) Updating, and (e, f) Switching. REF, DTWL and SWA refer to as reference
alignment, alignment with modified Dynamic Time Warping for Local alignment, and alignment with Smith-Waterman Algorithm, respectively. In
each pair, seed sequence is listed on the top and aligned synthetic sequence is listed on the bottom. The coverage (C) and similarity scores (Sn)
between seed sequence and synthetic sequence are also listed on the right side of each pair
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identical aligned daily events out of 4). NWA alignment
received a similarity score of 0.25. Similarly, DTW added
a circle event into the seed sequence and a triangle event
in the synthetic sequence, which generated a new se-
quence with 4 identical aligned daily events. DTW align-
ment had the highest similarity score (0.50). This also
explains that 8 out 16 DTW alignments between seed
patients and synthetic patients from switching operation
(In Table 3) had higher similarity scores than NWA and
reference alignments. 6 out of 16 NWA alignments were
also better than reference alignments.

Pairwise local sequence alignment results
In Fig. 3(a), the reference alignment contains the first two
daily events due to a deletion of the 3rd daily event in the
seed sequence. The coverage and similarity score of the
reference alignment are 0.50. SWA aligned the last two
daily events and had the same coverage and similarity score
as the reference alignment, implying that multiple align-
ment solutions might exist. However, DTWL inserted a
triangle daily event in the right position, thus the new se-
quence was identical to the seed sequence. DTWL align-
ment had the highest coverage (1.00) and similarity score
(0.75). The typical example shown in Table 4 is the align-
ment between the 3rd seed patient and the 11th synthetic
patient. The seed sequence in Fig. 3(b) had one more tri-
angle daily event than that in Fig. 3(a). Thus, the reference
alignment could be alignment of either the first two daily
events or the last two daily events. Its coverage and similar-
ity score are 0.40. Both SWA and DTWL made a full
coverage alignment by inserting a gap or triangle daily
event in the middle position. Due to the inserted triangle
daily event, the similarity score of DTWL alignment is
0.80, which is higher than that of SWA alignment (0.60).
In Table 4, among 16 alignments between 4 seed patients
and 4 synthetic patients created by only deleting opera-
tions, 13 DTWL alignments and 12 SWA alignments per-
formed better than corresponding reference alignments in
terms of coverage and similarity scores. 11 DTWL
alignments received higher similarity scores than SWA
alignments while they both had a full coverage of 1.00.
The synthetic sequences in Fig. 3(c) and (d) had a

trapezoidal daily event to replace a triangle daily event
in the seed patient. In Fig. 3(c), both DTWL and SWA
created the same alignments as the reference alignment.
They all had identical coverage and similarity scores
(0.50). Three similar cases can be found in Table 4, for
example, the alignment between the 1st seed patient and
the 13th synthetic patient. In Fig. 3(d), there are two
equal options for the reference alignment: the alignment
of the first two daily events or the alignment of the last
two daily events. Only the reference alignment with the
first two daily events is shown in Fig. 3(d). The coverage
and similarity scores of reference alignments are 0.40.

DTWL and SWA alignments had a full coverage (1.00)
and identical similarity scores (0.60). We found that
among 16 alignments between seed patients and syn-
thetic patients from only updating operations (the 3rd,
4th, 13th, and 14th rows in Table 4), 12 DTWL and
SWA alignments received a full coverage and equal same
similarity scores, for example, the alignment between the
2nd seed patient and the 4th synthetic patient.
The reference alignments in Fig. 3(e) and (f) had a switch

of two adjacent events (the triangle and the trapezoidal). In
Fig. 3(e), the reference alignment contained the last two
daily event and its coverage and similarity score are 0.40.
SWA aligned a triangle daily event and a hexagonal daily
event, so that SWA alignment received coverage and a
similarity score of 0.50. DTWL stretched the synthetic se-
quence and inserted a triangle daily event in the right pos-
ition. DTWL alignment had 4 daily events and received
highest coverage (0.80) and similarity score (0.60). The
similar situation in Table 4 is the alignment between the
1st seed patient and the 15th synthetic patient. In Fig. 3(f),
the first or last two daily events can be aligned as the refer-
ence alignment. The coverage and similarity scores of the
reference alignment are 0.33. Both DTWL and SWA had
coverage of 1.00 due to the insertion of a daily event and
gap spot while the similarity (0.71) of DTWL alignment is
higher than that (0.43) of SWA alignment. In Table 4,
among 16 alignments between seed patients and synthetic
patients from switching operation, 14 DTWL alignments
and 13 SWA alignments received better coverage and simi-
larity scores than reference alignments. The coverage of 14
DTWL alignments were identical to the corresponding
SWA alignments. Six DTWL alignments had higher
similarity scores than SWA alignments.

Limitations
This study for sure has several limitations, not limited to
the following:
We only used diagnosis codes in our experiments.

Other medical events such as demographics, procedures,
medications, and clinical notes were not considered. We
would like to incorporate more other medical event
types for more comprehensive evaluation of sequence
alignment algorithms in future, once we can infer the
dependency between diagnosis and the other event types
when synthesizing simulated patient medical records
that still reflect reality, or when we can afford more
expensive evaluation by physicians.
Secondly, we only used a limited number of operations

to create synthetic patient records that reflect real-world
situations in this study. We carefully selected 4 seed pa-
tients and created 20 synthesized patient medical records
for each of them. This was driven by our goal of perform-
ing an objective and detailed 360-degree examination. This
small size does not cover all the complex situations in large
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EHR database. After this, we could perform a much larger
scale evaluation with confidence and precision.
Last but not the least, we used self-defined scoring

system to quantitatively evaluate sequence alignment
results. This scoring system penalizes mismatching and
gap equally and also penalizes elements inserted by
DTW and DTWL. We plan to design and test different
scoring systems for evaluating sequence alignments. For
example, a scoring system treats acute and chronic dis-
eases differently by incorporating some knowledge base.

Conclusions
A full consideration of temporal sequence information
and aligning medical event sequences properly is funda-
mental for precise patient similarity calculation, since
medicine is about providing patients the right diagnosis
and treatments at the right timing. In this study, we syn-
thesized patient medical records using a set of synthesis
operations on top of real patient medical records from a
large real-world EHR database. Then we tested two
cutting-edge sequence alignment methods, dynamic time
warping (DTW) and Needleman-Wunsch algorithm
(NWA), and their corresponding versions for local align-
ments, modified DTW for Local alignment (DTWL) and
Smith-Waterman algorithm (SWA), for the purpose of
patient medical records alignment, in order to under-
stand their strengths and limitations. We found that
sequence alignment is very necessary for fully reserving
the temporal sequence information in patient medical
records. In addition, DTW (or DTWL) seemed to align
better and identify more similarities between patient
medical records than NWA (or SWA). But DTW,
NWA, DTWL, and SWA performed better than the ref-
erence alignment. Our evaluation work could provide
timely and valuable information on the strengths and
weakness of these sequence alignment methods for the
fast-growing areas of patient similarity calculation.
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