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Abstract

realized by thresholding-based method.

Background: Automatic vascular segmentation in X-ray angiographic image sequence is of crucial interest, for
instance, for better quantifying coronary arteries in diagnostic and interventional procedures.

Methods: A novel inter/intra-frame constrained vascular segmentation method is proposed to automatically segment
vessels in coronary X-ray angiographic image sequence. First, a morphological filter operator is applied to remove
structures undergoing the respiratory motion from the original image sequence. Second, an inter-frame constrained
robust principal component analysis (RPCA) is utilized to remove the quasi-static structures from the image sequence.
Third, an intra-frame constrained RPCA is employed to smooth the final extracted vascular sequence. Fourth, a
multi-feature fusion is designed to improve the vascular contrast and the final vascular segmentation is

Results: Experiments are conducted on 22 clinical X-ray angiographic image sequences. The global and local
contrast-to-noise ratio of the proposed method are 6.6344 and 4.2882, respectively. And the precision,
sensitivity and F1 value are 0.7378, 0.7960 and 0.7658, respectively. It demonstrates that our method is
effective and robust for vascular segmentation from image sequence.

Conclusions: The proposed method is effective to remove non-vascular structures, reduce motion artefacts
and other non-uniform illumination caused noises. Also, the proposed method is online which can just
process one image per time without re-optimizing the model.

Keywords: X-ray angiographic image sequence, Vascular enhancement, Multi-feature, Vascular segmentation

Background

Nowadays, coronary artery disease (CAD) is greatly
threatening human health [1]. Since X-ray angiography
(XRA) has better imaging quality and faster imaging
speed, it is regarded as the gold standard for the diagno-
sis and treatment of CAD. However, due to the perspec-
tive projection of 3D anatomic structures, much 3D
information has been lost and different anatomical
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structures are overlapped in the XRA images. Moreover,
the injection of contrast agent and the blood flow vari-
ation bring in-homogeneous intensity of coronary artery.
And the cardiorespiratory motion and patient movement
also introduce motion artefacts to the XRA images. To
improve the image-guided diagnosis and interventional
procedures of CAD, the automatic and robust vessel seg-
mentation is of great significance and meanwhile a chal-
lenging problem.

Vascular segmentation technique can be divided into
two classes, including the model-based and learning-
based methods. Based on the spatial continuity of
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vessels, level-set and active contour-based methods
are commonly utilized. Wang et al. [2] utilized the
level-set algorithm to segment the coronary artery by
constructing the speed function with the curvature,
intensity and model term. Sun et al. [3] proposed the
local region based active contour method by shape
fitting the energy function. It improved the segmenta-
tion accuracy and is much more robust to the non-
uniform intensity distribution and fitting initialization.
Based on the shape of vascular section, Cheng et al.
[4] employed a B-snake model to accurately segment
the small-scale vessels in the low-contrast images. Lee
et al. [5] utilized the Kalman filter to initialize the
contour and segmented the vessels by the active con-
tour model. The initialization improved the time effi-
ciency. The learning-based methods usually compute
the classification model based on the image hidden
information. Hassouna et al. [6] modeled the
background with two Gaussian and a rayleigh distri-
butions and the vessels with a Gaussian distribution,
respectively. Then they utilized the Expectation-
Maximization algorithm to estimate the distribution
parameters and employed the Markov Random Field
to be the spatial constraint to realize the final vascu-
lar segmentation. Goceri et al. [7] clustered the ves-
sels based on the K-means approach and improved
the segmentation accuracy by the morphology based
iterative optimization. Lupascu et al. [8] delivered the
high order features to the AdaBoost classifier to speed
the segmentation. Orlando et al. [9, 10] computed the
fused feature map by the Fully-Connected Conditional
Random Field to ensure the continuity of different
vascular segments. In recent years, Convolutional
Neural Network (CNN) based vascular segmentation
has attracted much researcher’s attention. Wang et al.
extracted the vascular features based on CNN to seg-
ment the vessels with a stochastic decision forest. Fu
et al. [11] combined CNN with Conditional Random
Field (CRF) and developed a DeepVessel network to
improve the segmentation accuracy. Luo et al. [12]
improved the DeepVessel network by considering the
non-uniform intensity and noise coexistence.

To the authors’ knowledge, the model-based segmentation
methods are sensitive to the initial contour and learning-
based approaches require large amounts of labeled datasets.
Moreover, the methods mentioned above have a significant
limitation in angiographic images with low contrast and
noisy background. Vascular enhancement can greatly ease
the vascular segmentation by enhancing the vascular struc-
tures and compress the background noise. The single-image
based enhancement easily introduces the non-vascular noise
and motion artefacts when dealing with X-ray angiogram im-
ages. While subtraction-based enhancement utilizes the an-
giograms with and without vessels. It can effectively remove
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the motion artefacts in the final enhanced vascular angio-
grams and improve the subsequent segmentation accuracy.

Current vessel subtraction methods can be classified
into two categories, including image registration based
methods and layer separation based methods. In the im-
aging of coronary artery, mask images are taken prior to
the perfusion of the contrast agent and coronary arteries
are not visible in them. While live images are taken dur-
ing the contrast agent passing through the coronary ar-
tery. Image registration based methods [13, 14] only
need a live image and a mask image whose motion is the
most similar to the live image. Such methods are usually
realized by template matching, similarity measure
maximization, image warping and subtraction technol-
ogy sequentially. Though the technique largely reduces
the motion artifacts and non-vascular noise, it is likely
to be interrupted by the patient motion or contrast
agent leakage when computing the correspondences be-
tween images. Motion layer separation based method
supposes an image in the sequence can be decomposed
into motion layers. The key part of the first type
methods [15-17] is motion estimation of each layer.
Zhu et al. [15] divided the sequence into the vascular
and non-vascular layers and applied optical flow to the
non-vascular layer to compute the deformation filed.
Zhang et al. [16] separated the sequence into three
layers, including static, lung (slow motion) and vessel
(rapid motion) layer and constructed a motion trans-
formation model for each layer. Nevertheless, the struc-
tures in the XRA sequence participate in different
motion patterns. Specific motion model in each layers
cannot cover all the motions of a structure, especially
vascular motion in the XRA sequences includes the car-
diac, respiratory, patient and camera motions. Another
kind of methods [18-20] supposes that the image is
under specific prior constraint and directly separates the
sequence into background and vessel layer. Many math-
ematical expressions, such as L1 norm, L2 norm, nuclear
norm and so on, have been applied to model the specific
prior. Robust principal component analysis (RPCA)
model, composed of sparse and low-rank prior, has be-
come a common tool in medical image analysis of vari-
ous imaging modalities.

In this paper, we propose an inter/intra-frame constrained
vascular segmentation in the angiographic image sequence.
First, a morphological filter operator is applied to remove
motion artefacts caused by respiratory motion from original
XRA sequence. Second, an inter/intra-frame constrained
RPCA (IFC-RPCA) is utilized to extract the vascular images.
Third, a multi-feature fusion is designed to realize the final
vascular segmentation. The proposed method is effective to
remove non-vascular structures, reduce motion artefacts,
other non-uniform illumination caused noise and preserve
the local information of vascular structures.
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Methods

In this section, the vascular images is distinguished from
the XRA sequence by removing the structures that are
static or undergoes the respiratory motion. Then, a
multi-feature fused descriptor is employed to further
compress the background noise in the vascular images
and the vascular structures are finally segmented by a
thresholding-based approach.

Inter/intra-frame constrained RPCA

To extract the vascular images from the XRA sequence
I, structures that are static or undergo the respiratory
motion should be removed. To reduce the disturbance
(lung, diaphragm) caused by the respiratory motion, a
circular structural element based morphological close
operation [18] is applied to the sequence I to obtain the
respiratory sequence R. By subtracting the sequence R
from sequence I, the respiratory disturbance can be re-
moved and the obtained sequence is denoted as DI. The
sequence DI is composed of two components, including
the moving vascular component and the quasi-static
non-vascular component. In addition, the vessels in se-
quence DI only occupy a small portion. Considering
RPCA aims to decompose the matrix into a low-rank
component and an overall sparse component by search-
ing for a low-dimensional subspace, it is suitable to sep-
arate sequence DI into the moving vascular component
and the quasi-static non-vascular component [21].
Hence, we have:

1
{B,E} = arg min IDI-B-E||% + A, |1BIl,
+ B, Elly (1)

where E refers to the vascular component, and B is the
quasi-static non-vascular component. f3; and j, are
regularization coefficients. ||llz is the Frobenius norm,
[I-lI, is the nuclear norm and [I-ll; is L1 norm.

Considering dealing with the steaming X-ray images
for coronary interventions, the online processing of XRA
sequence is essential on the basis of the motion informa-
tion in inter-frames. Hence, we utilize the explicit low-
rank factorization [21] to describe B by the subspace
basis Lr and the corresponding coefficients Ce. The
factorization can be denoted as B = Lr x Ce’. After this,
solving Eq. (1) equals to minimize the empirical cost
function g(Ce, E, Lr), and we have:

M
2xXN
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52 (Ipretr el £ + 5 Il + a1, )

(2)

where DI; is the ith image of sequence DI, N is the

g(Ce,E,Lr) = 2

Page 3 of 11

number of images in sequence DI. LrieRP*", Ce;eR’, D
is the dimension of an image in sequence DI, r is the
upper bounded rank of B. In the optimization of Eq. (2),
coefficients Ce, vascular component E and basis Lr are
disposed in an alternative manner. In the alternative
manner, {Ce; E;} of the ith image in DI is computed by
the ith image and Lr;_; of the (i-1) th image. Then, Lr;
of the ith image is re-computed on the basis of {Ce; E;}.
By repeating the procedure, vascular component in each
image of sequence DI can be computed by combining
the motion information of vascular structures as an
inter-frame constraint. After the inter-frame constrained
RPCA, the vascular component is separated from the
quasi-static non-vascular component in the XRA
sequence.

However, due to the non-rigid motion between the
frames in the XRA sequence, large amount of motion ar-
tefacts and noises may still exist in the vascular compo-
nent. Hence, we utilize the same morphological close
operation to remove the motion artefacts around the
catheter and obtain another difference sequence DI . To
remove more motion artefacts and noises, we introduce
the intra-frame constrained RPCA and denote it accord-
ing to Eq. (2) as follows:

! ! 1 ’ ! !
g(Ce , V,Lr) - NZL (HDIl.—Lrl.CeiT—V,-Hi)
A/ !
+5 lIcally + aalvill,
M
2XN

2
+ HLr HF

(3)

where Lr,eRP X’/, CegeR’/. In addition, since most static
structures have been removed in the inter-frame con-
strained RPCA, the optimization of intra-frame con-
strained RPCA will not depend on the motion
information across the image sequence DI . Hence, we
utilize a 1 matrix as Lr;. and the optimization of intra-
frame constrained RPCA only need to update {Ce;, E,},
as follows:

’ . 1 / ’ ’
{Cei7 Vi} = arg/ mmi ||Dli—LriCei—V,-H§

2 ’
|2 +/12HV1‘||1 (4')

+ 2y

Through the intra-frame constrained RPCA, the final
enhanced vascular sequence V is obtained. In sequence
V, the contrast of vessels in the images is improved and
the background is smooth and clean.

Multi-feature fused vascular segmentation
For each image V; in V, we utilize VI,(x) to represent the
intensity of i th image in VI at x, and x = [xy, x,]T which
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refers to the pixel coordinate. The Hessian matrix at
scale o can be computed as follows:

>  exp(-xTx/20%)

H = o2 VI,
(x,0) =0 l(x)*axlaxg 27102

(5)

We use A; and A, to be the eigenvalues of matrix H,
and v; and v, to be the corresponding eigenvectors of
matrix H. For the pixels belong to the vascular struc-
tures, the eigenvalues should satisfy the principle |14] =
0, |A1] < |A2]. The directions of eigenvectors v; and v,
are along with the vascular centerline and perpendicular
to the vascular tangential direction, respectively.

Since the vascular structures contain the elongate and
round-sectional segments (bending, bifurcations and diseased
vascular segments), a good vascular feature descriptor should
distinguish the vascular segments with other structures.
Hence, we design a new vascular feature descriptor. To avoid
the compression of feature descriptor, the first feature de-
scriptor [22] F(x, o) at each pixel is computed as follows:

Fi(x,0) = { In (B(x,0) +1) Aa(x,0) < ~v2no

0 else
(6)

However, F,(x,0) has a non-uniform response when
the bending and bifurcation of vascular segments appear
and is easily changed by the non-uniform illumination
introduced by the contrast agent infusion. To avoid
these conditions, another feature descriptor [23] Fy(x, 0)
at each pixel is calculated as follows:

0 da(x,0)<0,1,(x,0)<0
Ar(x,0)
Fa(x,0) = 1 . Az(xﬁn)zT>0
/13 (%,0) (A, (x,0)~Aa(x, 0)) (m) else
(7)
And,
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Az(x, O')

maxAy(x,0) 0 < Ay(x,0)< maxy(x,0)

Aa(x,0) > maxdy(x,0)
A(x,0) =
0 else

(8)

But F,(x, o) appears serious blurring when the vascular
segments are overlapped or very close to each other.
Hence, to improve the vascular contrast and compress
the non-vascular structures, we fuse the two feature de-
scriptor with a weighted pattern to produce the uniform
response of vascular segments and improve the bound-
ary accuracy of vascular segments:

F(x) = max

ammsawm(‘xl Fi(x,0) + az Fa(x,0)) (9)

Until now, we obtain a feature value for each pixel
in image VI,. Since the new feature descriptor can ef-
fectively distinguish the vascular and non-vascular
pixels, the segmented vascular structure image SI; can
then be obtained from image VI; by only utilizing a
threshold value.

Experimental results

All the experiments were implemented in MATLAB
(The MathWorks, Inc.) under the Windows 10 envir-
onment, and all the experiments were conducted on a
relatively low-cost PC with 16 GB RAM and 3.2 GHz
Intel CPU.

Dataset and evaluation criteria

The proposed method was evaluated on 22 XRA sequences
collected from the Peking Union Medical College Hospital.
The size of all the images in the sequences is 512 x 512 and
the resolution of each image is 0.3 x 0.3 mm?” In all 22
XRA sequences, the inflow and wash out of contrast agent

(b)

Fig. 1 An example of masks that are utilized for quantitatively validation of the proposed method. a the original image; b global mask; ¢ local mask
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in the whole coronary artery are all recorded during the im-
aging procedure.

To quantitatively evaluate the proposed IFC-RPCA
method, two kinds of masks are generated. One is used
to evaluate the global vascular contrast and pixels within
and outside the annotated vascular region consist of the
vessels and background, as shown in Fig. 1b. The other
one is used to evaluate the local vascular contrast. As
shown in Fig. 1c, vascular region is the same with the
global mask, and the background region is comprised of
the pixels in the white region, which is the 7-pixel-wide
neighborhood of the vascular region boundary.
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To evaluate the performance of the proposed method,
it will be compared with the multiresolution elastic
registration (MER) method [14], the online robust prin-
cipal component analysis (ORPCA) method [19], the
graduated RPCA with motion coherency constraint
(MCR-RPCA) method [20]. To evaluate the proposed
segmentation method, it will be compared with Fully-
Connected Conditional Random Field (FC-CRF) method
[10] and level-set-based method (LevelSet) [24].

Contrast-to-noise ratio (CNR) [18] is utilized to evalu-
ate the vascular contrast of the vessels and can be de-
fined as follows:

-

(b3), (d1)-(d3) extracted vascular images by IFC-RPCA method
A\

(a3), (c1)-(

Fig. 2 An example of extracted vascular images by the proposed method. (a1)-

)-(c3) original XRA images in two different sequences, (b1)-
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el

IFC-RPCA methods

A

Fig. 3 Comparison of the extracted vascular images on six randomly selected images from six different sequences by four methods.
(a1-f1): original XRA images; (a2-f2), (a3-f3), (a4-f4) and (a5-f5): extracted vascular images by MER, ORPCA, MCR-RPCA and

CNR = |//£F_”B|
oB

(10)
where yr and yp are the mean gray values in the vascular
and background regions in the extracted vascular im-
ages. op is the standard deviation of the gray values in
the background region. We compute the global CNR
and local CNR based on global mask and local mask,
respectively.

To evaluate the proposed segmentation method, we
utilize five metrics including the precision (pre), sensitiv-
ity (sen) and F1 value. In addition, the metrics are com-
puted as follows:

Table 1 Comparison of local and global CNR by four different
methods, including MER, ORPCA, MCR-RPCA and IFC-RPCA over
22 XRA images

Methods Local CNR Global CNR

Original Image 12175+ 0.3838 0.8259 + 0.2685
MER 0.1259 +0.0597 0.1709+0.1143
ORPCA 3.8914+0.5323 56527 £1.0719
MCR-RPCA 29081 +0.7021 48105+ 13528
IFC-RPCA 42882 +0.7430 6.6344 +1.0849
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Fig. 4 Simulated image with low dose contrast agent. (a) original image; (b) enhanced image; (c) simulated image

TP

re = —————

Pre="Tp 1 Fp
TP (1)

Sen = —————

TP + FN

1 2-pre-sen

N pre + sen

where TP, FP and FN indicate the true positive (cor-
rectly identified vessel pixels), false positive (incorrectly
identified vessel pixels) and false negative (incorrectly
identified background pixels), respectively.

Results

In our experiments, all the parameter settings are empir-
ical. In detail, diameter of the circular structural element
d=d =85/(2%p),l =y =1, = A, = 2.1/ max(M1,

M2), r=r =5, p=03, a; =a,=0.5, M1 and M2 where
are the size in each dimension of an image.

Figure 2 shows the extracted vascular images by the
proposed IFC-RPCA method. The order numbers of the
three random selected images in the first two rows are
17th, 23th, 31th. The order numbers of images in the
last two rows are 19th, 24th and 41th, respectively. Ac-
cording to the order, the inflow of contrast agent is
gradually infused within the coronary artery. In

Figs. 2(al) and (cl), the contrast agent is not fully in-
fused within the coronary artery. In Figs. 2(a2) and (c2),

vessels are in the diastole stage, while in Figs. 2(a3) and
(c3), vessels are in the systole stage. As can be seen from
the extracted vascular images, the vascular structures are
preserved throughout the XRA sequences and present a
very high contrast. In addition, motion artefacts and
other non-vascular noise are also removed and vascular
segments with small scales are also preserved.

Figure 3 shows the comparison results by four
methods, including MER, ORPCA, MCR-PCA and IFC-
RPCA, respectively. Six XRA images, as shown in
Figs. 3(al) to (f1), are randomly selected from six differ-
ent sequences. In Figs. 3(a2)-(f2), MER introduces much
motion artefacts near diaphragm, catheter and other
large intensity variation regions. In Figs. 3(a3)-(f3),
ORPCA removes much non-vascular noise, but intro-
duces serious motion artefacts around the catheter and
diaphragm. In Figs. 3(a4)-(f4), MCR-RPCA produces
strong artefacts near the vessels, diaphragm, and lung
boundaries. Images in Figs. 3(a5)-(f5) are computed by
the proposed IFC-RPCA method. Artefacts caused by
the catheter, lung tissues, diaphragm and vessels are
almostly removed.

Table 1 compares the global CNR and local CNR over
all the annotated XRA images by four different methods,
including MER, ORPCA, MCR-RPCA and IFC-RPCA,
respectively. All the methods obtain larger global CNRs
than the original images and greatly improve the

|

Fig. 5 Enhanced results based on simulated images with low dose contrast agent. a and ¢ simulated images; b and d enhanced results
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contrast of vessels. The global CNR of IFC-RPCA is
much larger than MER and yields 17.37 and 37.91% im-
provement by comparing with ORPCA and MCR-RPCA,
respectively. The performance of IFC-RPCA is achieved
by removing the artefacts near the vessels, catheters and
non-vascular noise. For the local CNR, the values by
MER is smaller than the local CNR of original images
which demonstrates that MER cannot improve the con-
trast within perivascular regions. IFC-RPCA obtains
1020 and 47.46% improvement by comparing with
ORPCA and MCR-RPCA, respectively. The proposed
IFC-RPCA can also make the boundaries of the vascular
structures much clearer.

We also simulate the angiograms with low dose con-
trast agent which has significant clinical value for the cli-
nicians and patients. The simulated images are
generated by linearly subtracting the enhanced vascular
image from the original image. Figure 4 shows an ex-
ample of the simulated image with low dose contrast
agent. As can be seen from Fig. 4(c), the contrast of the
vessels is greatly reduced.

Figure 5 shows the subtraction results based on the
simulated images with low dose contrast agent. In Fig. 5a,
it is very difficult to distinguish the vascular structures
from the background. While in Fig. 5c, the intensity of
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the vessels is very close to the bones. As can be seen
from Figs. 5b and d, the proposed IFC-RPCA method
can improve the contrast of the vessels and meanwhile,
remove the diaphragm and bones.

Fig. 6 shows the segmented vascular structures by the
proposed method. Angiograms in the first column are
randomly selected from image sequences. Images in the
third column are computed by the proposed feature de-
scriptor. In the images, there are uniform responses
when the vascular segments appear bifurcation, overlap-
ping or are very close to each other. In addition, the re-
sponses in vascular regions are much larger than the
background which brings the vessels high contrast. Im-
ages in the fourth column refer to the segmentation re-
sults by a threshold value from images in the third
column. In the images, the vascular edges are preserved
even when different vascular segments are very close. In
addition, vascular segments with small scales are also ac-
curately segmented. In the fifth column, vascular seg-
ments in green color refer to over-segmentation, while
vascular segments in blue color refer to under-
segmentation. As can be seen from the figures, the ves-
sels will be fractured when the intensity of vascular seg-
ments is close to the background. For the vessels with
large scales, they have precise boundaries and are

Fig. 6 Segmentation results by the proposed method. (a1)-(c1) original angiograms; (a2)-(c2) ground truth; (a3)-(c3) Multi-feature fused restuls;
(a4)-(c4) segmented results; (a5)-(c5) color map between the ground truth and segmented results. Red color: correctly identified vessel pixels,
green color: incorrectly identified vessel pixels and blue color: incorrectly identified background pixels
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consistent with the ground truth. As also can be seen
from the segmented results, the non-vascular noise is al-
most removed.

Figure 7 shows the comparison results by methods, in-
cluding LevelSet, FC-CRF and the proposed model. In
the first column, two right and two left coronary artery
angiograms are randomly selected from the image se-
quences. In the third column, vascular segments with
large scales are precisely segmented and vascular seg-
ments with small scales present serious noise. In
addition, LevelSet method is semi-automatic and re-
quires the manual labeled seed points. In the fourth col-
umn, large amounts of noise appears in the non-vascular
regions and there are many holes in the vascular seg-
ments. After comparing with the ground truth, the di-
ameters of the obtained vascular segments are smaller
than the actual vessels which make a great influence to
the subsequent parameter measurement of vascular seg-
ments. In the fifth column, there are fractures when the
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vascular segments appear small-scales. But the vascular
segments with large scales are precisely segmented. In
addition, when the vascular segment is overlapped with
the diaphragm, the segmentation results doesn’t intro-
duce motion artefacts. For each angiogram in the fig-
ures, the segmentation results by the proposed method
present a clean background without non-vascular noise.
Table 2 provides the quantitative comparison in pre, sen
and FI value by LevelSet, FC-CRF and the proposed
method. Pre, sen and F1 value of the proposed method
are all the largest, the vessels and noise are both dis-
posed best. All the metrics of LevelSet are all superior to
those of FC-CRF. The vascular structure preservation
and background noise removing are all better than these
of FC-CRF.

Conclusion and discussion
In the paper, we propose an inter/intra-frame con-
strained vascular segmentation method and demonstrate

Fig. 7 Qualitative comparison between different methods. (a1)-(d1) original angiograms; (a2)-(d2) ground truth; (a3)-(d3) segmented results by
LevelSet; (@4)-(d4) segmented results by FC-CRF; (a5)-(d5) segmented results by the proposed method
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Table 2 Quantitative segmenation comparison of the proposed
method with CF-CRF and LevelSet

methods pre sen F1 value
LevelSet 0.7025 0.7430 0.7222
CF-CRF 0.6314 0.6875 0.6583
proposed method 0.7378 0.7960 0.7658

its application in the XRA sequences. Experimental re-
sults demonstrate the effectiveness of the proposed
method in accurate vessel segmentation in the XRA se-
quence. As can be seen from the experimental results,
the proposed IFC-RPCA effectively reduces the lung tis-
sues, diaphragm and vertebral bodies and removes the
motion artefacts near the catheter and non-vascular
noises from the XRA sequence. The proposed IFC-
RPCA vyields 17.37 and 37.79% improvement in global
CNR and 10.20 and 47.46% improvement by comparing
with ORPCA and MCR-RPCA methods. The proposed
multi-feature fused feature descriptor produces uniform
response in different vascular segments and makes the
vascular structures high contrast with the background.
Based on this, the vascular structures can be simply seg-
mented with only a threshold value. We obtain 0.7378,
0.7960 and 0.7658 with respect to the precision, sensitiv-
ity and F1 value, respectively. It demonstrates the pro-
posed method can both effectively dispose the vessels
and background. The proposed vessel segmentation
method is online without re-optimizing the whole model
and automatic, it is very suitable to be applied in the
intra-operative image guided surgical navigation.
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