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Abstract

Background: The medical community uses a variety of data standards for both clinical and research reporting
needs. ISO 11179 Common Data Elements (CDEs) represent one such standard that provides robust data point
definitions. Another standard is the Biomedical Research Integrated Domain Group (BRIDG) model, which is a
domain analysis model that provides a contextual framework for biomedical and clinical research data. Mapping
the CDEs to the BRIDG model is important; in particular, it can facilitate mapping the CDEs to other standards.
Unfortunately, manual mapping, which is the current method for creating the CDE mappings, is error-prone and
time-consuming; this creates a significant barrier for researchers who utilize CDEs.

Methods: In this work, we developed a semi-automated algorithm to map CDEs to likely BRIDG classes. First, we
extended and improved our previously developed artificial neural network (ANN) alignment algorithm. We then
used a collection of 1284 CDEs with robust mappings to BRIDG classes as the gold standard to train and obtain
the appropriate weights of six attributes in CDEs. Afterward, we calculated the similarity between a CDE and each
BRIDG class. Finally, the algorithm produces a list of candidate BRIDG classes to which the CDE of interest may belong.

Results: For CDEs semantically similar to those used in training, a match rate of over 90% was achieved. For those
partially similar, a match rate of 80% was obtained and for those with drastically different semantics, a match rate of
up to 70% was achieved.

Discussion: Our semi-automated mapping process reduces the burden of domain experts. The weights are all
significant in six attributes. Experimental results indicate that the availability of training data is more important than the
semantic similarity of the testing data to the training data. We address the overfitting problem by selecting CDEs
randomly and adjusting the ratio of training and verification samples.

Conclusions: Experimental results on real-world use cases have proven the effectiveness and efficiency of our
proposed methodology in mapping CDEs with BRIDG classes, both those CDEs seen before as well as new, unseen
CDEs. In addition, it reduces the mapping burden and improves the mapping quality.

Keywords: Common data element, Artificial neural network, Schema mapping, Biomedical research integrated domain
group (BRIDG) model
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Background
As Andrew Tanenbaum said: “The nice thing about
standards is that there are so many to choose from” [1].
While Tanenbaum was talking about digital media stan-
dards, the statement applies to clinical data standards as
well. Unfortunately, this truism has a corollary: the worst
thing about data standards is that they require signifi-
cant mapping efforts. More often than not, these are
resource-intensive manual mappings.
In 2008 Rachel Richesson enumerated the problems

with manual mapping, including the significant amount
of time needed to develop and maintain the mappings;
frequent lack of unambiguous, one-to-one mappings;
and the context-specific nature of the mappings that
limit their reuse [2]. Unfortunately, 10 years later these
problems have yet to be fully resolved.
The experience of the Center for International Blood

and Marrow Transplant Research (CIBMTR) regarding
the implementation of electronic data capture and the
adoption of data standards is an excellent case study of
the problems with manual mapping. The CIBMTR is a
research collaboration between the National Marrow
Donor Program (NMDP)/Be The Match and the
Medical College of Wisconsin. For more than 45 years,
the CIBMTR has been collecting outcomes data and fa-
cilitating research in hematopoietic cell transplantation
[3]. While the transplantation centers submit most of
their data using a Web-based interface, the CIBMTR’s A
Growable Network Information System (AGNIS) appli-
cation [3] allows submissions directly from a transplant-
ation center’s database to the CIBMTR. Common Data
Elements (CDEs) from the National Cancer Institute’s
(NCI) cancer Data Standards Registry and Repository
(caDSR) form the foundation of data transmission via
AGNIS. To either send or receive data using AGNIS, a
transplantation center must map their internal data
points to the CDEs [4].
While some transplantation centers and third-party

vendors successfully use AGNIS, difficulties in manually
creating and maintaining the mappings have limited its
adoption [4]. To reduce the mapping burden, the
CIBMTR developed a physical data model based on the
Biomedical Research Integrated Domain Group (BRIDG)
model [4] and mapped some of their CDEs to this
model. In collaboration with multiple organizations such
as the NCI and the Clinical Data Interchange Standards
Consortium (CDISC) [5], the BRIDG model was devel-
oped to “produce a shared view of the dynamic and
static semantics of a common domain-of-interest, specif-
ically the domain of protocol-driven research and its
associated regulatory artifacts” [6].
In addition to helping create a physical database

model, the BRIDG model can facilitate mapping to other
standards. For example, the BRIDG model has been

harmonized and mapped to CDISC’s Clinical Data Ac-
quisition Standards Harmonization (CDASH) and Study
Data Tabulation Model (SDTM) [5]. As a result, the
CIBMTR’s mappings to BRIDG can be used to facilitate
mapping to CDISC. In 2016 mapping to CDISC became
more critical when the Federal Drug Administration
(FDA) mandated that most submissions to the FDA
Center for Biologics Evaluation and Research (CBER)
and Center for Drug Evaluation and Research (CDER)
must comply with CDISC standards [7].
Whereas it can make mapping to other standards easier,

mapping to BRIDG itself is difficult. Version 5.1 of the
BRIDG model contains 320 classes [6]. While the model is
subdivided into nine smaller subdomains [5], its size
makes the mapping a significant challenge. The CIBMTR
has mapped 1284 CDEs to the BRIDG model. This year-
long mapping effort involved six subject matter experts,
including a clinician and a BRIDG representative.
The CIBMTR has more than 2000 CDEs left to map.

Based on the previous project, the mapping of the
remaining CDEs will take approximately 2 years, which
is unacceptable. One solution to reduce this mapping
burden is to develop a semi-automated mapping tool
that would recommend candidate matches from which a
subject matter expert could select the best mapping.
Semi-automated mapping solutions are an area of ac-

tive research, especially with ontology alignment. There
are structural and conceptual similarities between CDEs
and ontologies as both are associations of attributes/
terms through relationships. This conceptual view shows
the similarity of ontology alignment with the CDE to
BRIDG mapping. There are two main methods for map-
ping ontologies: rule-based and learning-based. For the
rule-based approach, a representative method developed
by Noy and Musen [8] showcased a semi-automatic
approach, PROMPT, based on the SMART algorithm of
the same authors [9]. This approach first identifies label
matching, then the user acknowledges or declines the
merged entity pairs manually. Anchor-PROMPT [10] is
an upgraded version of PROMPT that calculates the
similarity based on the ontology structure.
For the learning-based approach, GLUE [11] uses ma-

chine learning techniques to do the ontology mapping.
It uses two base learners, the Content Learner and Name
Learner, as inputs to a meta-learner, which forms the
final prediction; the meta-learner combines the weighted
sum of the outputs of the base learners. The advantage
is that it is a suited approach for textual instance
descriptions. The disadvantage is that this approach is
not applicable to relations or instances.
Other ontology matching algorithms exist. COMA

[12] is a platform that combines the result of single
matches. A statistical schema matching delivered by He
and Chang [13] matches schemas by obtaining the
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generative model. Rubiolo et al. [14] present an ap-
proach based on an artificial neural network (ANN)
model within a Knowledge Source Discovery agent. It
helps the user to avoid unrelated search results and the
possibility of making the wrong decision. Chortaras et al.
[15] used a recursive neural network to learn the similar-
ities between ontology concepts and then to combine
two ontologies. This method has achieved some promis-
ing initial results. PRIOR+ [16] is an ontology mapping
approach founded on propagation theory, information
retrieval techniques, and artificial intelligence. It pro-
vides an estimate of f-measure for ontology constraint.
ANN methods are adopted in many of the algorithms

mentioned above because ANNs have high accuracy,
strong parallel processing ability, strong distributed
storage and learning ability, strong robustness and fault tol-
erance to noise, full approximation of complex nonlinear
relationships, and associative memory functions. Of par-
ticular importance, neural networks can extract features
not available in many other machine learning methods.
Previously we developed an algorithm, Ontology Align-

ment by Artificial Neural Network (OAANN) [17, 18] to
map two ontologies. It combines the benefits of rule-
based and learning-based approaches to learn and adjust
weights of concept name, concept properties, and concept
relationships between a pair of concepts from two differ-
ent ontologies. The algorithm applied gradient descent
and the targeted design of each attribute similarity. We
used this algorithm to successfully align concepts from
two real-world biological ontologies with 0.9 Precision
and 0.85 Recall, significantly reducing the time that
domain experts spend on mapping ontologies.
This manuscript is an extension from our previously

published work [19]. Compared with the original paper,
most sections were significantly extended in this version.
Major extensions (not including minor modifications)
are summarized as follows. (1) Background: expanded
introduction along with eight new references. (2) Mate-
rials and Methods: expanded description of the metamo-
dels, especially the ISO 11179 CDE structure along with
one new mapping example, four new figures, and some
new references; added information about three new test-
ing datasets along with one new table; and one new
example for similarity determination. (3) Results and Dis-
cussion: extensive evaluation of our algorithm on real-
world test cases; major modifications to the overall testing
approach along with three new testing sets; one new flow-
chart describing the training process; one new sub-section
about testing with preexisting mappings; one new chart
summarizing the testing results; expanded description
along with one new table in the Weights sub-section; and
expanded description in the Overfitting sub-section.
Our most significant contribution in this work is to fa-

cilitate mapping two different meta-models: ISO 11179

CDEs and the BRIDG domain model. Importantly, as far
as we know, no other work semi-automatically maps
ISO 11179 CDEs to a domain model.
The rest of this paper is structured as follows. In the

Materials section, we discuss key aspects of the ISO 11179
standard, the BRIDG model that form the foundation of
the algorithm, and the datasets used for verification and
testing. In the Methods section, we describe the details of
our alignment algorithm. In the Results section, we report
the testing of the algorithm and its application to a set of
unaligned CDEs. In the Discussion section, we provide a
detailed analysis of our experimental results. Finally, we
conclude by discussing critical future work.

Materials
Metamodels and mappings
Our algorithm maps two different metamodels: ISO
11179-based CDEs and the BRIDG domain model. The
ISO 11179 standard serves as the metamodel for the Na-
tional Cancer Institute’s cancer Data Standards Registry
and Repository (caDSR) [20]. This metamodel breaks a
data point into reusable structures consisting of conceptual
and representational components. The conceptual compo-
nent refers to a Data Element Concept (DEC) [21]. The
DEC consists of two parts: object class and property, de-
scribing concepts and concept characteristics, respectively.
The representational component of a CDE refers to a

Value Domain (VD), which describes a set of allowed
values in CDEs. The set of allowed values could be con-
strained to a specific set of permissible values or con-
strained by a list of requirements such as data type and
maximum length [21]. Each VD has a representation term
describing the information that VD is capturing. See Fig. 1
for an illustration of the structure. An example of a CDE
is one used to capture a patient’s specific type of Acute
Myeloid Leukemia. See Fig. 2 for the structure of the CDE
Acute Myeloid Leukemia Classification Type [22].
The algorithm uses the six CDE attributes that capture

the core semantics: CDE Long Name, Object Class, Prop-
erty, Value Domain Long Name, Representation Term,
and Question Text. Since the CDE Long Name should be
created by concatenating the Object Class, Property, and
Representation Term [23], it is one of the key attributes.
For example, the CDE represented in Fig. 2 has an Object
Class of “Acute Myeloid Leukemia”; a Property of “Classi-
fication”; and a Representation Term of “Acute Myeloid
Leukemia Type.” Combined they produce a CDE Long
Name of “Acute Myeloid Leukemia Classification Type.”
The question text presents the semantics of the data elem-
ent in everyday language instead of the formal syntax of
the CDE. Therefore, it was included as an input variable.
For example, the CDE in Fig. 2 has a Question Text of
“What was the classification of the acute myelogenous
leukemia?” The Value Domain Long Name was included
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to ensure the complete representation of the CDE’s se-
mantics. CDE attributes such as allowed values, data type,
and maximum length were not included in the analysis
because they do not contribute to the semantic meaning
of the CDE.
Within the caDSR, the constructs within a CDE and

its attributes are associated with concepts from the NCI
Thesaurus, a controlled vocabulary maintained by the
Enterprise Vocabulary Service [20]. These concepts
provide the concept name, definition, synonyms, and
relationships to other concepts. Our algorithm currently
leverages the concept name only.
In contrast to the ISO 11179, the BRIDG model repre-

sents data points using Unified Modeling Language
(UML) classes, attributes, and relationships [24]. In
UML, classes represent a classification of an object and
attributes represent an object’s property [25]. In relation
to the ISO 11179 metamodel, they correspond to the
object class and property respectively [21]. To facilitate
viewing of the BRIDG model, it has been subdivided into
topic-specific views. Fig. 3 shows the Oncology view of
the model.

The CDE for Acute Myeloid Leukemia Classification
Type [22] is mapped to the BRIDG class “Performed-
Diagnosis” and attribute “value.” 25 CDEs use a similar
object class, property, and representation term structure
to represent the specific disease classification. Of those
25, 17 have been manually mapped to the BRIDG model.
All are mapped to the class “PerformedDiagnosis” and
the attribute “value.” One can easily see how an algo-
rithm can predict the mapping for the eight remaining
CDEs. While this is a simple example, the algorithm
leverages similar, though potentially subtle, patterns to
map CDEs to BRIDG classes.

Datasets
We used two different types of data sets: training sets
and testing sets. The training set consisted of 1232 CDEs
mapped to the BRIDG model. To create the base train-
ing set, we first examined the 1284 CDEs mapped to the
BRIDG model by CIBMTR. These CDEs can be consid-
ered a “gold standard” because a robust team of experts,
including a clinician and BRIDG representative, per-
formed the mapping. Of the 1284 CDEs, 1232 are

Fig. 1 CDE structure. CDE mainly consists of two parts: Data Element Concept and Value Domain

Fig. 2 Example of CDE structure. The CDE structure for a data element capturing a patient’s specific type of Acute Myeloid Leukemia
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actively used and can be downloaded from the caDSR’s
search site, the CDE Browser [26]; the remaining 52
CDEs were retired. Given that the 52 CDEs are retired
(and not easily accessible to the broader community), it
was decided to exclude them from the training set.
The 1232 active CDEs have been grouped into 57

BRIDG classes. We refined the training set to exclude
those CDEs mapped to BRIDG classes associated with
less than 10 CDEs. CDEs mapped to such BRIDG classes
do not provide enough training examples and will inter-
fere with the training results. The final training set con-
sisted of 1134 CDEs mapped to 19 BRIDG classes. We
divided the data into two groups: training and verifica-
tion. We tested the effectiveness of the algorithm using
different training to verification ratios: 90% training and
10% verification; 75% training and 25% verification.
For testing purposes, we compared the effectiveness of

the algorithm against three different sets of CDEs that had
been previously mapped to BRIDG. With these testing
sets, the correct BRIDG class is known and can be com-
pared to the prediction of the algorithm. Also, each testing
set has different degrees of similarity to the training data-
set. Since the bulk of the semantic meaning of a CDE is
contained within the DEC [23] [21], we determined the
degree of semantic similarity by calculating the percent of

NCI Thesaurus concepts in the DECs of the testing set
that also occurs in the DECs of the training set.
The first testing set consists of the previously men-

tioned 52 retired CDEs. Even though the retired CDEs
are not actively used, their mappings to BRIDG are still
valid. Furthermore, the same team mapped the retired
CDEs as well as the training data. Hence, this represents
the purest test case, as there are no subjective mapping
differences that may lead to unexpected results. The sec-
ond testing set consists of 220 CDEs that the CIBMTR
mapped in 2017. These CDEs are associated with a new
therapeutic domain and were mapped by a different
individual and not the original mapping team. This
represents a more difficult case, due to domain changes
and change in the team. However, to this point, all the
mappings were done in the same organization. The third
set contains CDEs created by the NCI’s curation team to
represent CDISC’s CDASH variables. Since the BRIDG
release documentation contains mappings to the
CDASH variables, mappings from these CDEs to the
BRIDG model can be determined. Since the CDEs in this
testing set were created and mapped by a different
organization than the training set, this represents an ex-
cellent opportunity to see how the algorithm performs
with a different organization’s content. As of December

Fig. 3 Oncology Subset of the BRIDG Model [6]. This is the Oncology view of the BRIDG model
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2018, the NCI had created CDEs for more than 600 of
the CDASH variables. However, not all of the CDEs had
all of the attributes required by the algorithm nor were
BRIDG mappings clear for all CDEs. We were able to
use 186 CDEs for testing purposes.
The BRIDG model is periodically updated to reflect

the changing clinical domain. The CDEs in the training
set were mapped to version 3.0 of the BRIDG model,
which was the current version in 2012. In 2017, version
5.0 of the model was released [6]. Since the new CDEs
were mapped to BRIDG version 5.0, we tested only those
CDEs mapped to BRIDG classes present in BRIDG 3.0.
Table 1 summarizes the characteristics of each testing
set.

Methods
Purpose and overview of our method
Our method for mapping ISO 11179 CDEs to the
BRIDG model is an expansion of an existing algorithm
for aligning ontologies, Ontology Alignment by Artificial
Neural Network (OAANN) [17, 18]. The ANN algo-
rithm consists of training and verification phases. The
goal of the training phase is to determine the best
weights of the six attributes to classify the CDEs using
the similarity of the CDE with each BRIDG class map-
ping. It outputs the top ten most probable BRIDG clas-
ses. Domain experts can use these recommendations to
facilitate their mapping efforts. The verification phase
verifies the accuracy of the mapping without changing
the model.

Data preparation
We determine the attribute similarity of two CDEs by
first comparing the similarities between each of their six
attributes. We determine the attribute similarity by first
creating a matrix that calculates the similarity of each
word in the attribute’s phrase. According to our previous
research [17], we calculate string similarity using the fol-
lowing equation:

sword ¼ 1−
d
l

The edit distance, a commonly used measure for
measuring word difference, is denoted as d. The length
of the longer string is l. For example, the edit distance d
is two between word “what” and word “was”. The “h” in

“what” is deleted in the first step. Then, “t” is substituted
by “s” in “wat”. The above two steps successfully chan-
ged the word “what” into the word “was” by doing the
minimum number of single-character edits, i.e. inser-
tions, deletions or substitutions. The length of the longer
word “what” is 4. Thus, the similarity between “what”
and “was” is 0.5. We obtain the maximum similarity
from the matrix and put the similarity into a list, Lword _
similarity. We then delete the column and the row where
the maximum similarity exists. We repeat this process
until the matrix is empty and get the final list of Lword _
similarity. A set of different word similarity threshold was
chosen, i.e., from 0.6 to 0.9. These thresholds were ap-
plied both during the training and verification process.
Once determined, the threshold does not change during
the training and verification phases. We compare every
similarity ln from Lword _ similarity with the threshold we
set. Two words match if ln is greater or equals to the
word similarity threshold. Finally, the attribute similarity
si(i = 1, 2…6) equals the number of words matched di-
vided by the number of similarities in the word similarity
list. Continuing the example from the Materials section,
we compare the similarity of the CDE Long Names of
the CDE Acute Myeloid Leukemia Classification Type
[22] and the CDE Chronic Myelogenous Leukemia
Classification Type [27]. Their question text is “What
was the classification of the acute myelogenous
leukemia?” and “What was the classification of the
chronic myelogenous leukemia?” respectively. We build
the word similarity matrix in Fig. 4. We sort the matrix
and obtain the first maximum similarity from the first
row and the first column and append this similarity
into Lword _ similarity. So Lword _ similarity = {1}. After repeat-
ing the process, Lword _ similarity = {1, 1, 1, 1, 1, 1, 1, 1, 0}.
When we set the word similarity threshold to 0.9, the
attribute similarity, s6 = 8/9.
After we obtain all attribute similarities, the overall

similarity between two CDEs is calculated as the
weighted sum of the attribute similarities, s1, s2, s3, s4, s5,
and s6:

s ¼
X6

i¼1

wisið Þ

where
P6

i¼1wi ¼ 1, wi are initialized into 1/6 and were
adjusted through the weight learning procedure.
We learn the weights for the six attributes during the

group classification process. We design the learning
problem as follows:

Task, T: Recommend the most likely top ten BRIDG
classes for a CDE.
Performance measure, P: Accuracy measurements for
the 1232 CDEs already grouped.

Table 1 Similarity of testing data to training data

Testing Set Number of CDEs Semantic Similarity

Similar 52 86.54%

Moderately Different 220 68.64%

Different 186 4.52%
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Training experience, E: a set of classified CDEs by
manual matching.
Target function, V: a list of class recommendation.
Target function representation: V ðbÞ ¼ P6

i¼1wisi.

Network design
We modified our previous network design [17] to use a
two-layer 6 × 1 network. Figure 5 illustrates the net-
work’s vector inputs of s1, s2, s3, s4, s5, and s6. The neural
network output is the overall similarity between two
CDEs. Section B of the Method part gives the way to cal-
culate the similarity value s between two CDEs.

Hypothesis space and our searching strategy
The hypothesis space is a 6-dimensional space consisting
of six vectors wi(i = 1, 2, ..., 6). We use gradient descent

as our training rule. We minimize the training error of
all training examples, so our task is to find such a vector.
Training error E is calculated as

E w!� �
≡
1
2

X
d∈D

td−odð Þ2

in accordance with [28]. In Eðw!Þ , the set of training
examples is denoted as D, the target output for training
example d as td, the output of the network for d as od.
Two concepts are the base of training error, which are
savg and savg _ other _ cls.

� savg: Let us say that CDEm − n belongs to BRIDGm.
From BRIDG1, we pick up the first element from
BRIDG1 which is CDEm − 1 and calculate the overall
similarity between the selected CDEm − 1 and other

Fig. 4 Example of word similarity matrix. This is the similarity matrix of the question text corresponding to the CDE Acute Myeloid Leukemia
Classification Type and the CDE Chronic Myelogenous Leukemia Classification Type. Their corresponding question text is “What was the
classification of the acute myelogenous leukemia?” and “What was the classification of the chronic myelogenous leukemia?” respectively. After
calculating the similarity between every word and generating the word similarity matrix, we build the word similarity list by sorting and obtaining
the maximum similarity from the matrix. The maximum similarity is represented by grey background. Note that after obtaining the maximum
similarity, the similarities of this column and this row will be ignored, meaning that they will not participate in the sorting any more

Fig. 5 Neural network structure. The inputs are the similarities of six attributes. The output is the overall similarity between two CDEs
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CDEs belong to this BRIDG class, separately. Then
average these total similarities to get savg.

� savg _ other _ cls: We use the same CDE CDEm − 1, to
calculate the similarity of this CDE with other CDEs
from classes other than BRIDG1. Then average those
similarities to get savg _ other _ cls.

As we apply the gradient descent, we traverse one BRIDG
class after another, pick up CDEm − 1 to calculate savg and
savg _ other _ cls, and finally make the adjustment of wi. The ad-
justment is represented by Δwi. The calculation of Δwi is

Δwi ≡ η
X

d∈D
td−odð Þsid

in accordance with [28]. η represents the learning rate of
Δwi. The procedure is shown in Fig. 6. Notice that the
BRIDG class is trained from less to more according to
their CDE amount in each class. As the number of data
increases, our accuracy rate generally increases.

Error type
In order to determine if the weights need to be updated
and how to update the weights, two different formulas

are needed. For the former, we need to calculate the
training error, which is given in the following formula:

E w!� �
≡
1
2

X

d∈D

smax−savg
� �2

We want our savg to be as large as possible to
minimize Eðw!Þ , so the larger value smax should be the
target output. As the goal is to minimize error, if the
error is greater than zero and the number of updates are
below a provided threshold, we update the weights using
the following formula:

Δwi ≡ η
X

d∈D

smax−savg
� �

sid

td is represented by smax. smax is the higher value
between savg and savg _ other _ cls.
od is represented by savg, which is the real output.

The weights are updated iteratively until verification
accuracy stabilizes. As the iteration time (number of

Fig. 6 Training flow chart. The training flow demonstrates the process of training and recommendation

Renner et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 7):276 Page 8 of 13



updates) increases, when the other parameters are using
the same combination, the verification accuracy will in-
crease and then gradually become stable. Experimentally,
it was determined that when the iteration time is larger
than 50, the error ( Eðw!Þ ) will only fluctuate up and
down by 1%. Since the results stabilized at this point, the
maximum number of iterations was set to 50. Addition-
ally, the learning rate η is fixed to 0.05. The value was
chosen after performing some exploratory experimenta-
tion that indicated this value resulted in stable, repeat-
able results compared to higher values, and equivalent
performance with respect to lower values.
Once the formulae were chosen, and the parameters

fixed, we could then train the model to discover the six
weights. Once the training is completed, we then
proceed with the verification and testing results, which
are discussed in Results.

Results
Overall testing approach
Our testing consisted of two phases. First, we verified the
algorithm using a subset of the training data. Then, we
tested the algorithm using three testing sets of CDEs for
which we had pre-existing mappings. For each testing set,
we determined the best match rate and the parameters
needed to obtain the best match rate. We defined the
match rate as the percent of total CDEs for which the exist-
ing BRIDG class mapped to the CDE was present in the list
of top ten BRIDG classes returned by the algorithm. Table 2
shows the parameters used for verification and testing
along with the optimal values as determined by our testing.

Verification of training data
Table 3 shows the accuracy of the algorithm when it
returns one to ten potential BRIDG classes for each
CDE in the verification data set. When the training-
verification ratio changes from 3:1 (75%/25%) to 9:1
(90%/10%), the training performance increases. When
the algorithm returns more potential class matches, the
accuracy of the algorithm increases and the performance
differences between the 3:1 and 9:1 versions of the algo-
rithm decreases. When the algorithm returns 10 poten-
tial class matches reaches ten, the accuracy of the

algorithm reaches more than 90%. Also, we found that
there was a significant increase in accuracy when the
number of potential class matches returned increases
from 1 to 2. This means the efficiency of the calculations
and the cost performance of the results are relatively
high. From the point of view from domain experts,
returning 10 potential matches is reasonable because of
the high accuracy.

Testing with pre-existing mappings
Using the testing data sets described in the Materials
section, we evaluated the algorithm to determine which
combination of parameters produced the best match
rate. Additionally, for each testing set, we ran the algo-
rithm twice. One run utilized all CDEs contained in the
testing set and the other run used only those CDEs that
had been manually mapped to a BRIDG class for which
there was sufficient training data. The goal of the last
testing scenario was to determine the accuracy of the
algorithm when we knew that it should produce an
accurate match.
Overall, for the testing sets, we found that training-

verification ratios of 3:1 (75%/25%) and 9:1 (90%/10%),
performed equally well. However, the 3:1 version
achieved this performance while requiring fewer training
CDEs per BRIDG class (8 vs. 10). This makes the algo-
rithm more flexible when testing novel CDEs. A similar-
ity threshold of 0.7 or 0.8 achieved optimal match rates.
Depending upon the semantic similarity of the testing

set and the availability of sufficient training examples,
the algorithm produced match rates between 34 and
94%. The lowest match rates occurred when testing the
algorithm using CDEs that were semantically different
than the training set (4.52% similarity). Figure 7 summa-
rizes the testing results.

Discussion
General result analysis
Fundamentally, the algorithm performs very well and
has the potential to significantly reduce the mapping
burden while improving the quality of the mappings. It
should be noted that the use of our algorithm represents
a semi-automated mapping process. While the algorithm
can make suggestions, it will never replace the need for

Table 2 Algorithm parameters

Parameter Description Values Tested Optimal Values

Training ratio Ratio of training to verification data 75% training and 25%
verification
90% training and 10%
verification

75% training and 25%
verification

Training CDEs per BRIDG class Determines the training list 4–10 8

Similarity threshold Determines the threshold for considering
two words to be similar

0.6–1.0 0.7 or 0.8
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subject matter expert review and approval. While some
testing scenarios resulted in lower match rates, the lower
match rates are the result of two factors: semantic differ-
ences in the CDEs and lack of training data for the
BRIDG class mappings. The testing results indicate that
the greater the difference in the DEC concepts from the
DEC concepts in the training set, the lower the overall
match rate: 87% for the most similar dataset versus 34%
for the most different when all CDEs in the testing set
were tested. However, the match rate for all testing sets
increased markedly when the algorithm was run against
only those CDEs that mapped to a BRIDG class with
sufficient training data: 94% for the most similar dataset
versus 70% for the most different. This indicates that the

availability of training data is more important than the
semantic similarity of the testing set to the training set.
Increasing the size of the training set addresses both

the semantic differences in the CDEs and the lack of
BRIDG class instances in the training set. As the algo-
rithm is used, and the appropriate mappings reviewed by
a team of experts, the approved mappings can be added
to the training set. This will incrementally improve the
functioning of the algorithm. However, it is important to
note that just adding data to the training set is not suffi-
cient. One must add training data that increases the
variability of the training set. When testing the Seman-
tically Different testing set, we tried expanding the train-
ing data to include the Semantically Similar, and
Moderately Different testing sets. This did not increase
the match rate and, in one scenario, actually decreased
the match rate. A closer examination of the expanded
training set revealed that of the 38 BRIDG classes repre-
sented in the expanded training set, only five of them
resulted in new training instances.
The algorithm can also assist with validating existing

mappings. For example, the CDE Other Therapeutic
Procedure Administered Indicator [29] was manually
mapped to the BRIDG class “PerformedDiagnosis.”
While the algorithm did match to this class, the ranking
was ten. A closer review of the potential classes returned
for this CDE showed that the second-ranked class
“PerformedProcedure” was a better match. Indeed, of
the six CDEs in the combined dataset that had a match
with a rank of ten, half of the manual mappings were

Table 3 Accuracy with different training validation

Top n Accuracy (training set:
verification set = 3:1) (%)

Accuracy (training set:
verification set = 9:1) (%)

1 33.99% 41.52%

2 51.96% 63.16%

3 64.71% 73.10%

4 71.90% 80.70%

5 76.14% 83.04%

6 82.03% 85.38%

7 85.29% 87.72%

8 86.93% 90.06%

9 89.22% 91.23%

10 92.16% 94.15%

Fig. 7 Best match rates per testing set. Bars refer to the best matching rate for testing sets with different degrees of semantic similarity
compared to the training set: similar, moderately different, and different. The blue bars represent the situation in which the testing set contains
only CDEs mapped to BRIDG classes with sufficient training data. The orange bars represent the situation that the testing set contains all CDEs
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potentially incorrect, and the algorithm returned better
potential matches.

Weights
The weights are all significant in six attributes although
they are slightly different from each other. This means
that the attribute suggestion of the domain experts is
accurate. We found that the weight for the Question
Text is always slightly higher than the other attributes.
Regardless of the parameters, from the training result,
the average is 0.198, and the standard deviation is 0.010
for the initial 1232 CDEs. The average is 0.186, and the
standard deviation is 0.001 for the 1504 combined CDEs.
Since the Question Text is a complete sentence, it is
more semantically useful and plays a greater role in
classification. The second column of Table 4 contains an
example of trained weights for the 1232 initial CDEs
when Top n, iteration times, training-verification ratio,
training elements in class, and similarity threshold is set
to 10, 50, 9:1, 10, 0.7, separately. The verification of this
combination is 159 out of 171, which is 92.98%. The
third column of Table 4 contains an example of trained
weights for the 1504 CDEs with the same parameters as
the second column. From this combination, the verifica-
tion is 187 out of 225, which is 83.11%.

Overfitting
One common problem encountered is overfitting, where
the neural network picks weights tailored for the train-
ing instances versus the problem. We took two steps to
address this. First, to ensure the team did not subcon-
sciously introduce bias, CDEs were selected randomly
instead of alphabetically.
Second, as previously noted, the ratio of training and

verification samples had been modified. As seen in
Table 3, the changes in proportion had minimal im-
pact for the larger values of n. For lower values, more
training data led to improvements, indicating the
learned weights are fitting to class concepts rather
than instances. When the new CDEs are introduced,
the 3:1 ratio became preferable as the new CDEs con-
tain new classes. The improvement with the lower

ratio indicates that the new classes vary from the initial
set of classes; this indicates the 9:1 weights were learn-
ing the known class representations. A lower ratio al-
lows more “flexible” weights, which handles new
classes at the expense of some accuracy. This indicates
that overfitting is not happening.
Finally, the results shown in Fig. 7 also provide evi-

dence that overfitting problem is not a problem. The
match rate for similar concepts is high, over 80% in both
cases. Hence, the networks are learning concepts versus
instances. The fact that the “moderately different” are
again achieving well above random matching is indica-
tive that the patterns the neural network are transferra-
ble. Again, this is evidence that the networks are looking
at patterns of behavior rather than particular concepts.
The most interesting result is the “different” semantic
concepts. When using CDEs that have sufficient training
samples, the CDEs that have very different semantic
meanings are achieving approximately a 70% match rate;
this indicates the patterns discovered by the neural net-
works are highly transferable. It is only when all CDEs
concepts are used in training data (even those with few
examples) that we see a large drop. This is indicative
that the neural network is (a) unable to extract what are
the meaningful patterns for each type of CDE and (b)
the low example CDEs are effectively introducing noise.
While this leads to low match rates, it also demonstrates
that the neural network is attempting to find meaning-
ful, transferable patterns.

Conclusions
The CDEs in the caDSR provide robust data point defi-
nitions that help ensure that clinical data adheres to the
FAIR data principles: findable, accessible, interoperable,
and reusable [30]. Mapping CDEs to the BRIDG model
increases their value by providing a contextual frame-
work and by facilitating their mapping to a variety of
other data standards such as CDASH and SDTM.
Because manual mappings have many disadvantages

including being extremely time-consuming and rather
error-prone, there is an urgent need to map CDEs to
BRIDG classes in a semi-automated manner. To han-
dle this important challenge, we have developed an
ANN-based machine learning algorithm that semi-
automates the mappings between CDEs and BRIDG
classes, followed by recommending a list of candidate
classes to which the CDE of interest may belong. We
evaluated our algorithm using a set of real-world use
cases, and our experimental results showed that our
algorithm has the potential to not only significantly re-
duce the mapping burden but also greatly improve the
quality of the mappings.
In our future work, we plan to make several changes

to the algorithm to further improve its effectiveness.

Table 4 Example of attribute weights

Weight Name Weight

Verification - 1232 Verification – 1504

w1 (CDE Long Name) 0.174620962 0.174501362

w2 (Object Class) 0.156449029 0.155271219

w3 (Property) 0.159148243 0.156401809

w4 (Value Domain Long Name) 0.159921116 0.164160267

w5 (Representation Term) 0.160018435 0.164215956

w6 (Question Text) 0.189842216 0.185449386

Renner et al. BMC Medical Informatics and Decision Making 2019, 19(Suppl 7):276 Page 11 of 13



Most significantly, we can leverage the wealth of infor-
mation contained in the NCI Thesaurus ontology. Each
CDE’s object class, property, and representation terms
are created using concepts found within the NCI The-
saurus [20]. The NCI Thesaurus combines a reference
terminology with an ontology to create a computable
source of semantic information. In addition to providing
a consistent naming convention and detailed definitions,
the NCI Thesaurus also provides synonyms, semantic
types, and relationships between concepts [31]. Expand-
ing the algorithm to include this information will pro-
vide users with even more robust matching results.
We will also be adapting the algorithm to use the Data

Element Concept (DEC) long name. We did not include
the DEC long name in the algorithm because the caDSR
tooling automatically constructs it by concatenating the
Object Class and Property. Therefore, we assumed that
Object Class and Property completely represent the
semantics. However, 40% of the Data Element Concept
Long Names in the training set were not an exact
concatenation of the Object Class and Property. A future
iteration of the algorithm should include the Data
Element Concept Long Name.
There are some potential enhancements to the current

training process that will be considered in the future. For
instance, currently the training loss is considered as the
sum of squared error, which may lead to an unnecessarily
large gradient and possibly make the training process
unstable under certain circumstances. To address this in
future work, we may define the training loss as mean
squared error. In addition, the problem may be defined as
a multi-label classification problem, in which case binary
cross-entropy may serve as a better loss measure. More-
over, using Stochastic Gradient Descent with momentum
rather than the conventional gradient descent has been
proposed for the future, as it can result in a smoother
training process. Finally, we may also test the utility of
Early Stopping, which stops the learning process if the
error doesn’t decrease after a given number of epochs.
This may make it more robust to inclusion of additional
data, where 50 iterations may no longer be sufficient.
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