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Abstract

Background: We used the Surveillance, Epidemiology, and End Results (SEER) database to develop and validate
deep survival neural network machine learning (ML) algorithms to predict survival following a spino-pelvic
chondrosarcoma diagnosis.

Methods: The SEER 18 registries were used to apply the Risk Estimate Distance Survival Neural Network (RED_SNN)
in the model. Our model was evaluated at each time window with receiver operating characteristic curves and
areas under the curves (AUCs), as was the concordance index (c-index).

Results: The subjects (n= 1088) were separated into training (80%, n= 870) and test sets (20%, n= 218). The training data
were randomly sorted into training and validation sets using 5-fold cross validation. The median c-index of the five validation
sets was 0.84 (95% confidence interval 0.79–0.87). The median AUC of the five validation subsets was 0.84. This model was
evaluated with the previously separated test set. The c-index was 0.82 and the mean AUC of the 30 different time windows
was 0.85 (standard deviation 0.02). According to the estimated survival probability (by 62months), we divided the test group
into five subgroups. The survival curves of the subgroups showed statistically significant separation (p< 0.001).

Conclusions: This study is the first to analyze population-level data using artificial neural network ML algorithms for the role
and outcomes of surgical resection and radiation therapy in spino-pelvic chondrosarcoma.
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Introduction
The Surveillance, Epidemiology, and End Results (SEER)
database has been queried in a series of reports to
analyze all primary malignant tumors of the osseous
spine, including chondrosarcoma [1–4]. The SEER regis-
try has been collecting cancer-related information since
1973, and it represents 28% of the total U.S. population
today, serving as the only population-based comprehen-
sive data source, including stage of cancer, treatment
modality and survival data [5]. However, most of previ-
ous studies included in the SEER database have either

included only a basic demographic description or have
excluded patients with incomplete data in multivariable
analysis [6–8].
Machine learning (ML) provides the opportunity to

analyze heterogeneous and complex data due to the
greater capability to identify unintuitive patterns in large
patient datasets [9]. Several ML algorithms have been
applied in clinical medicine to predict disease, and they
have shown a higher accuracy in diagnosis when com-
pared to classical methods [10]. ML models have been
expected to be useful for small datasets typical of rare
pathologies such as primary bone tumor and showed the
good discrimination and performance on decision ana-
lysis [11].
In the present study, we hypothesized that applying

ML techniques may be equally valuable in other clinical
areas, such as in identifying the prognostic factors in
spinal and pelvic chondrosarcoma. We seek to develop
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and validate recurrent neural network ML algorithms to
precisely predict survival following a diagnosis of chon-
drosarcoma using a national database.

Methods
Data collection
The SEER database is a longitudinal database that col-
lects information from 17 population-based cancer regis-
tries (http://seer.cancer.gov/). Serial registry data are de-
identified and submitted to the United States National
Cancer Institute on a biannual basis to make available to
researchers. The primary data in the SEER database in-
cludes the following variables: age at diagnosis, gender,
race, primary site and size of tumor, histology, grade of
tumor, stage of tumor, surgical treatment, radiation and
chemotherapy, and overall survival (OS) in months. The
original data set has 193 variables. (https://seer.cancer.
gov/data-software/documentation/seerstat/nov2016/).
In this study, patients with chondrosarcoma diagnosed

from 1973 to 2014 were selected using the Histologic
International Classification of Diseases for Oncology,
Third Edition (ICD-O-3), codes 9220–9243. The sites of
presentation were compiled according to ICD-O-3 top-
ography codes and were grouped into vertebral and pel-
vic sites in a fashion similar to that in previous studies
[6, 8]. The extent of tumor was reclassified based on
SEER EOD (Extent of Disease) and CS (Collaborative
Stage) into three groups: ‘confined’ (defined as tumor
encasement within the periosteum), ‘locally invasive’ (be-
yond the periosteum without distant involvement), and
‘distant’. Cases only with an autopsy/death certificate
were excluded due to the unknown survival periods. As
the SEER database uses publicly available data without
personal identifiers, an approval from Institutional re-
view board and/or informed consent are not required.

Study data preparation
The fourteen input variables for the study include sex,
ethnicity (white, black, Hispanic, or other), age at diag-
nosis, marital status, primary site (spine and pelvis),
tumor size, histologic type, grade, laterality, SEER his-
toric stage, surgery, radical resection, radiation, chemo-
therapy, and total number of in situ/malignant tumors
for the patient. The patient’s age at diagnosis was
grouped into 3 categorical variables with intervals of 30
years. The tumor size was divided into two groups (> 8
or ≤ 8 cm) according to the T stage classification for
bone tumors determined by the American Joint Com-
mittee on Cancer. The age, grade, tumor size, and num-
ber of tumors were used as discrete ordinal values. The
other variables were considered to be categorical. All
subjects (n = 1088) were separated into a training set
(80%, n = 870) and a test set (20%, n = 218). The training
data were randomly sorted into the training set and

validation set using 5-fold cross validation (Fig. 1). This
step was repeated to optimize the hyperparameters.
Adjusting the hyperparameters, the median values of the
c-index among the five tests were evaluated to find the
optimal hyperparameters (number of learning epochs,
risk value, and time window). After the optimization
step, the final algorithm was retrained with the whole
training set and evaluated with the test set. After separ-
ating the training and test sets, the missing values of the
input variables were imputed using the k-nearest neigh-
bor algorithm and transformed using Standard Scaler.

Risk estimate distance survival neural network (RED_SNN)
The key point of this model is that the event and time
should be located in different dimensions, and the neural
network learns these two targets at the same time using
a multimodal algorithm (Fig. 2, Table 1, Additional file 1:
Figure S1 and Additional file 2: Table S1). The event is
defined as a binary value (survive = 0 or death = 1) in the
time window period, which requires a logistic model.
Time is the total follow-up period of each patient de-
fined as a continuous variable (month), which requires a
regression model. Our multimodal algorithm enables
learning those two different characters by estimating the
risk estimate distance (RED). In the time window period,
subjects were located in the time dimension and the sur-
vival dimension. In the survival dimension, the event
cases will have a risk score (α) that can be specified by
the severity of each cancer. In this vector space, RED is
defined as the cosine distance between survival and
death in a certain time window. Thus, RED is higher in
cases of earlier death, which represents a higher risk.

Risk Estimate Distance REDð Þ ¼ cosine distance

¼ 1− cos∅ ¼ 1−
A∙B
Aj j Bj j

The parameter of the model (θ) should be inferred
using the cosine proximity loss function (LðθÞ) as follows
(Xi: features of i-th subject, n: subjects).
Y_hat (timei, eventi) = g (θ; Xi), {1, 2,…i} ∈ n

L θð Þ ¼ 1−cosθ ¼ 1−
Y ∙Y hat
Yj j Y hatj j

where Y_hat is the estimated outputs, Y is the observed
time and event.
In the next time period, some patients will die (new

event) and some will be lost (censored), thus the observed
time and event will change in the next time window. The
algorithm is trained serially with the different target value
at each time window, and the model parameter (θ) will be
gradually adjusted to the time serial targets. (In this algo-
rithm, we did not consider the change in the features (X) at
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Fig. 1 Enrolled Study Population and Pipeline of Data Analysis. The training data were validated using 5-fold cross validation

Fig. 2 The architecture of the basic learning unit of the RED_SNN model. (a) The network architecture of the basic unit was composed of 8
layers, including two long short term memory (LSTM) layers. The input layer was comprised of 28 nodes that represented 26 input features and 2
latent survival features. The output layer was composed of 2 nodes implementing linear function, representing time and event. Since the two
target nodes have different characteristics, we did not use the softmax function. The other layers were composed of fully-connected nodes
implementing a rectified linear unit function. (b) The validation data (n = 169) were inputted to the pre-trained network. The number of nodes
was gradually reduced across the hidden layers. The output time and event were compared to the true target values
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each time window because our algorithm is designed to es-
timate the prognosis with the first status of the patients.)
The algorithm was trained using backpropagation and was
optimized using RMSProp at every two months (time win-
dow (m) = 2) with a single epoch and risk score (α) = 10.

Model evaluation and statistical analysis
The present study was developed and written according
to transparent reporting of a multivariable-prediction
model for individual prognosis or diagnosis model devel-
opment guidelines. Patient outcomes were measured
based on OS, the period (in months) between diagnosis
and death or loss of follow-up from any cause, as re-
ported in the SEER database. The performance of our
prediction model was evaluated at each time window
with the receiver operating characteristic (ROC) curves
and areas under the curves (AUCs). Using the last
follow-up information, the concordance index (c-index)
of the model was also evaluated. The AUCs and c-
indexes were compared between the groups using the
Mann-Whitney test. The calibration curves were esti-
mated by comparing the mean probability of the pre-
dicted survival with the actual survival proportion using
Kaplan-Meier estimates after subgrouping of the test
group into seven equally numerous subsets.
In the test group, the SEER historic stage and the sub-

groups classified by the predicted survival probability
were compared using Kaplan-Meier curves. Each curve
was compared to the neighboring curves using the log-

rank test. Comparisons between groups were considered
to be statistically significant at p < 0.05. We used the
Keras and Theano libraries to obtain the deep learning
framework. Data preprocessing was performed using the
scikit-learn library. Statistical analysis was performed
with SPSS version 24.0 (SPSS Inc., Chicago, IL, USA).

Results
Patient demographics
The search identified 1089 patients with primary chon-
drosarcoma of the osseous spine and pelvis between
1973 and 2014. Only one case was excluded owing to an
unknown survival period. Among the remaining 1088
patients, 62.0% were men and 86.2% were white
(Table 2). The mean and median age of diagnosis were
51.7 and 52 years, respectively. The year of diagnosis was
2000 or later for 65.3% of cases.
Disease was histologically confirmed in 1061 patients

(97.5%). In contrast, radiologic and clinical confirmation
were performed in 27 patients (2.5%). Among the 1061
patients who received histologic confirmation, most were
diagnosed with chondrosarcoma, not otherwise specified
(87.1%). Among other histologic types, myxoid (5.5%),
dedifferentiated (4.0%), and mesenchymal (2.1%) were
common histologic variants. Regarding grade, 64.1% of
cases were of low grade (grade I and II), 16.9% were high
grade (grade III and VI), and 19.0% were of unknown
tumor grade. The mean and median tumor size at the
time of diagnosis were 96.6 mm (standard deviation 61.2

Table 1 Algorithm of risk estimate distance survival neural network

X_initial is observed variables of each patients at the first visit. Targets include time and event. Time target (T) is a continuous variable representing
follow-up months
m is the time window or the interval time, which is a tunable hyper-parameter (In this study, the interval time was 10month)
ti is the last observed time during the time interval i
Survival target (E) is a binary value representing event (alive: 0, death: 1). Ei is a binary event during the time interval i. The neural network is trained with the
targets Y[Ei, ti] recurrently at each time point i using cosine distance as a loss function. ( is a hyperparameter representing weight of death.) For example, E1 = 0
at the first time window could be E2 = 0, 1, or censored at the second window, thus the neural network should adjust their parameter to the following targets.
After their serial training, the network learned to perceive severity of the cancer patient
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mm) and 88.0 mm, excluding 394 patients with un-
known tumor size. The extent of the disease was known
in 92.6% cases, with the majority presenting as regionally
invasive disease (41.4%). The index site was the first

malignant tumor; 868 patients had only the index tumor,
while 220 patients had two or more tumors.
After diagnosis, 12.3% of patients received both sur-

gery and radiation, 57.9% underwent surgery alone, and

Table 2 Patient demographics, tumor characteristics, and treatment modality

Characteristic

Age at diagnosis, yrs Mean ± SD 51.70 ± 18.81

Median (range) 52.00 (8–93)

Age at diagnosis stratified, n (%) 0–29

30–59

> 59

Sex, n (%) Male 675 (62.0)

Female 413 (38.0)

Race, n (%) White 938 (86.2)

Black 79 (7.3)

Other (Asian) 59 (5.4)

Unknown 12 (1.1)

Primary site involved, n (%) Vertebral column 218 (20)

Pelvic bones, sacrum 870 (80)

Histology type Chondrosarcoma, NOS 948 (87.1)

Juxtacortical chondrosarcoma 7 (0.6)

Myxoid chondrosarcoma 60 (5.5)

Mesenchymal chondrosarcoma 23 (2.1)

Clear cell chondrosarcoma 6 (0.6)

Dedifferentiated chondrosarcoma 44 (4.0)

Grade I 300

II 397

III 121

IV 63

Unknown 207 (19.0)

Stage of the tumor Localized 411 (37.8)

Regional 450 (41.4)

Distant 147 (13.5)

Unknown 80 (7.4)

Surgery performed, n (%) Yes 818 (75.2)

No 249 (22.9)

Unknown 21 (1.9)

Radiation therapy (%) Yes 228 (21.0)

No 848 (77.9)

Unknown 12 (1.1)

Chemotherapy (%) Yes 139 (12.8)

No 949 (87.2)

Cause of death (%) Tumor related 333 (30.6)

Other 223 (20.5)

Censored 532 (48.9)

NOS not otherwise specified
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9.0% underwent radiation alone, while 16.2% of patients
received neither, and 4.5% had an unknown treatment
regimen (Table 3). During follow-up, 556 patients died,
and among these, disease-related deaths were confirmed
in 333 cases. The survival analysis based on Kaplan-
Meier curves revealed that the 5-year OS and disease
specific survival for all patients were 55.4 and 69.2%, re-
spectively. The median OS was 92 months.

Training and validation of RED_SNN
We optimized the hyperparameters of our model at the risk
value: 10, time window: 2months, and 2 learning epochs. In
this setting, the model is trained every two months for 62
months (30 times), with time-dependent target values within
a single epoch. The same learning process is repeated with
different batches in the second epoch. The median c-index
of the five validation sets was 0.84 (95% confidence interval
0.79–0.87). The median AUC of the five validation subsets
was 0.84 (Fig. 3a and b).

Performance evaluation of RED_SNN using test data set
The RED_SNN with fixed hyperparameters (risk value:
10, time window: 2 months, and two learning epochs)
was finally trained with the total training set, and the
final RED_SNN specified for spinal and pelvic chondro-
sarcoma was developed. All of fourteen input variables
selected initially were applied in final model. This model
was evaluated with a previously separated test set. The
c-index was 0.82, and the mean AUC of the 30 different
time windows was 0.85 (standard deviation 0.02). The
calibration curve analysis showed that the predicted

survival probability represented the actual survival pro-
portion within a 10% margin of error (Fig. 4a and b).

Prognostication according to estimated survival
probability
With the test data set, Kaplan-Meier curves were gener-
ated according to the SEER historic stages (Fig. 5a). A
clear separation of the survival curves was shown for the
different stage groups identified using the survival tree
method (log-rank test; p < 0.001). According to the esti-
mated survival probability (by 62months), we divided the

Table 3 Surgical and adjunctive treatment in 1088 patients with
spinal and pelvic chondrosarcoma

Surgery (n) Radiation (n) Chemotherapy Number of patients

Yes (818) No (673) No 622

Yes 51

Yes (135) No 106

Yes 29

Unknown (10) No 9

Yes 1

No (249) No (159) No 128

Yes 31

Yes (88) No 64

Yes 24

Unknown (2) No 2

Unknown (21) No (16) No 14

Yes 2

Yes (5) No 4

Yes 1

Fig. 3 Optimization and validation of RED_SNN model using 5-fold
cross validation. a ROC curves to evaluate the prediction accuracy of
the RED_SNN model. The model was serially trained to learn
patient’s survival status within a 10-month time interval, until 62
months from the initial observation. ROC curves predicting survival
at each time interval were evaluated with validation sets. b The
mean AUC’s of the survival prediction at each time point. The
average AUC of 5-fold cross validation was 0.84
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test group into five subgroups. The first subgroup in-
cluded patients with estimated survival probability greater
than 96% (n = 19), and the second subgroup included pa-
tients with estimated survival probability between 78 and
95% (n = 64). Patients with estimated survival probability
between 53 and 77% were in the third subgroup (n = 58),
and patients with an estimated probability between 32 and
52% were in the fourth subgroup (n = 44). Patients with a
survival probability less than 31% were in the fifth sub-
group (n = 33). Kaplan-Meier curves were generated for
each subgroup (Fig. 5b). All five different survival curves

of the subgroups were clearly separated, with statistical
significance (log-rank test; p < 0.001).

Discussion
Although chondrosarcoma is the third most common
primary malignant bone tumor, the spine is a relatively
rare site that presents a challenge for surgery due to the
potential for local recurrence [12–18]. Moreover, in
chondrosarcoma, there has been no precise classification
or subgrouping according to the prognosis due to its low
incidence. Prediction models for survival or other prog-
nostic factors have been explored using conventional
statistical methods. Multivariable logistic regression has
been one of the most widely used methods to identify
risk factors of events, such as complications or death in
cancer research [9, 10].

Fig. 4 Performance evaluation of RED_SNN using test data set. a
ROC curves to evaluate the prediction with test data set. The test
data were analyzed by pre-trained RED_SNN and its output
(expected survival probability) was compared to the real survival of
the test set at each time point. b Calibration curves of RED_SNN
model to predict the survival rate of the test set. The test data were
analyzed using pre-trained RED_SNN, and the test patients were
equally divided into seven subgroups according to the model’s
predicted survival probability at five years

Fig. 5 Kaplan Meier curves of subgroups according to SEER stage vs
our model expected survival probability. a SEER stage identified
three prognostic subgroups in Kaplan Meier survival analysis. b
RED_SNN identified five prognostic subgroups in Kaplan Meier
survival analysis
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ML techniques and SEER data in cancer research
Since cancer is associated with multidimensional fac-
tors, conventional linear statistical models have not
shown reliable accuracy in predicting prognosis. To
build non-linear statistical models, various ML tech-
niques, including Bayesian networks (BNs), semi-
supervised learning (SSL), support vector machines
(SVMs), decision trees (DTs) and artificial neural net-
works (ANNs) have been widely applied to develop
predictive models, resulting in accurate and powerful
decision-making in cancer research. Zhou and Jiang
[19] used DTs and ANNs in a survival analysis of pa-
tients with breast cancer. Delen et al. [20] compared
logistic regression, DTs, and ANNs to predict breast
cancer survivability. In addition, Endo et al. [21] com-
pared seven methods in regard to prediction of 5-year
survivability in diagnosed cases of breast cancer.
Due to the rarity of chondrosarcoma, only a few small case

series of treatment outcomes have been reported over several
decades at individual institutions [12, 13, 16, 17, 22–24]. The
SEER database enables outcome analysis for a large number
of patients based on attributes that are broadly classified as
demographics (e.g., age, sex, location), therapeutic (e.g., surgi-
cal procedure, radiation therapy), and outcomes (e.g., survival
period, cause of death). Previous investigations have analyzed
survival period of patients from the SEER database based on
demographics and prognostic determinants of primary osse-
ous neoplasms of the spine. However, past works have not
identified prognostic subgroups. In contrast, there is a great
deal of published literature related to SEER data studies for
other cancer types. Chen et al. and Fradkin used SEER data-
base to analyze survival patterns in lung cancer [25, 26].
Fathy et al. studied colorectal cancer survival rate prediction
in relation to the number of hidden layer in the ANN [27].

Adoption of ANN model
ANNs, in particular, may allow accurate performance in
the presence of unreliability, including incomplete data
or measurement errors. Moreover, ANN could detect
and recognize complex non-linear relationships between
the variables [28]. In this regard, ANNs are expected to
improve the predictive value of the retrospective data
analysis. One of the earliest works in survival analysis
using ANN was introduced by Faraggi and Simon [29],
who used ANN as a basis for a nonlinear proportional
hazard model. In a predictive model developed to evalu-
ate the survival of women with breast cancer [30], the
authors compared three classification models using the
SEER database. They found that the calculated accuracy
rates for SSL, SVM, and ANNs were 71, 51, and 65%, re-
spectively. Our previous study also revealed that the pa-
tients with gastric cancer could be more accurately
classified according to survival outcome by using SRN
than classical TNM staging [31].

In this study, we developed a novel algorithm specific to
survival analysis, and the results indicate it offers better per-
formance compared to those in other studies using both a
conventional statistical model and an ML model. Our RED
model showed mean AUC of 0.85. In the calibration curve
(Fig. 4b), our model has a tendency to over-estimate the
survival of patients with poor prognosis and a tendency to
under-estimate those with good prognosis, which is similar
to a conventional logistic prediction model. We identified
eight subgroups with an approximate predictive power of
32 attributes. Perioperative identification of these subgroups
should help prognosticate survival as well as assist in guid-
ing treatment modality for patients with spinal and pelvic
chondrosarcoma.
Yet, the development of model base on ANNs is em-

pirical, and some methodological issues remain to be
unresolved. However, implementing statistics based on
artificial intelligence could produce valuable information
and clinical relevance including disease staging, patient’s
prognosis, survival prediction and treatment decision
making for physicians in clinical practice and should de-
serve further attention.

Limitation and future direction
However, the present study has limitations. One of limita-
tions is that variations in treatment strategies could not be
accounted for, including radiation and chemotherapy and
surgical strategies. Previous studies have shown that surgical
techniques might have an impact on survival period, as
chemotherapy regimens [18, 31–34]. Although chondrosar-
coma examined in the study is resistant to chemotherapy,
the SEER database does not contain detailed chemotherapy-
related data. The SEER database also lacks information on
surgical strategies including en-bloc and intralesional resec-
tion. Future multi-institutional studies may be warranted to
determine the role of these variables as well that of advances
in targeted radiotherapy and chemotherapy regimens, par-
ticularly in treating chondrosarcoma variants.
Secondly, artificial neural network has the ability to

detect all possible interactions between variables. How-
ever it may act as a ‘black box’ and have limited ability
to identify variables (or coefficient weights) used to cre-
ate the models and possible causal relationships.
Lastly, the development and validation of the machines

learning algorithms described in this study have not
been externally validated in an independent physician-
collected dataset or other registry such as the national
Cancer Database (NCDB). As the model performance
would be similar or much lower if an external dataset
was used, the generalizability of the algorithm predic-
tions remains to be determined, and future studies
should seek to build on the findings presented here by
examining prospectively collected registries.
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Conclusions
RED_SNN is a valid method to predict survival for
spinal and pelvic chondrosarcoma, and it appears to be
comparable to other methods. RED_SNN may offer the
advantage of increased sensitivity for predicting longer
or shorter OS.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12911-019-1008-4.

Additional file 1: Figure S1. Experiments Networks (A) Final Network
consists of Embedding Layer, LSTM Layer, 4 Fully Connected Layers. (B)
Dropout0.3 Network adds Dropout Layer(0.3) between FC Layer and
LSTM Layer on origin network. (C) Dropout0.5 Network adds Dropout
Layer(0.5) between FC Layer and LSTM Layer on origin network. (D)
Dropout0.7 Network adds Dropout Layer(0.7) between FC Layer and
LSTM Layer on origin network. (E) Bignode network has randomly
increased nodes in some Layers on the origin network.

Additional file 2: Table S1. 5-fold valid test accuracy about various
networks.
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