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Abstract

Background: Learning from routine healthcare data is important for the improvement of the quality of care.
Providing feedback on clinicians’ performance in comparison to their peers has been shown to be more efficient
for quality improvements. However, the current methods for providing feedback do not fully address the privacy
concerns of stakeholders.

Methods: The paper proposes a distributed architecture for providing feedback to clinicians on their clinical
performances while protecting their privacy. The indicators for the clinical performance of a clinician are computed
within a healthcare institution based on pseudonymized data extracted from the electronic health record (EHR)
system. Group-level indicators of clinicians across healthcare institutions are computed using privacy-preserving
distributed data-mining techniques. A clinician receives feedback reports that compare his or her personal
indicators with the aggregated indicators of the individual’s peers. Indicators aggregated across different
geographical levels are the basis for monitoring changes in the quality of care.
The architecture feasibility was practically evaluated in three general practitioner (GP) offices in Norway that consist
of about 20,245 patients. The architecture was applied for providing feedback reports to 21 GPs on their antibiotic
prescriptions for selected respiratory tract infections (RTIs). Each GP received one feedback report that covered
antibiotic prescriptions between 2015 and 2018, stratified yearly. We assessed the privacy protection and
computation time of the architecture.

Results: Our evaluation indicates that the proposed architecture is feasible for practical use and protects the
privacy of the patients, clinicians, and healthcare institutions. The architecture also maintains the physical access
control of healthcare institutions over the patient data. We sent a single feedback report to each of the 21 GPs. A
total of 14,396 cases were diagnosed with the selected RTIs during the study period across the institutions. Of these
cases, 2924 (20.3%) were treated with antibiotics, where 40.8% (1194) of the antibiotic prescriptions were narrow-
spectrum antibiotics.
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Conclusions: It is feasible to provide feedback to clinicians on their clinical performance in comparison to peers
across healthcare institutions while protecting privacy. The architecture also enables monitoring changes in the
quality of care following interventions.

Keywords: Learning healthcare system, Feedback, Peer comparison, privacy, Security, Antibiotic prescriptions,
Quality improvement

Background
Introduction
Rapid learning from data generated in routine clinical
care is a major driver of quality improvements. Con-
tinuous analysis of routine health data and the
provision of feedback to clinicians using reports, deci-
sion support systems, or other feedback mechanisms
represent the key ideas behind the learning healthcare
system paradigm [1–3].
The feedback that compares the performance of clini-

cians with their peers is even more important for the be-
havioral change of clinicians [4–8]. Meeker et al. [5]
found peer comparison to be the most efficient feedback
method to minimize inappropriate antibiotic prescrip-
tions. A large study on the perception of feedback on
clinical performance by physicians revealed the import-
ance of peer comparisons with similar patient popula-
tions and practice characteristics [6]. Continuous
feedback is necessary for sustaining the achieved gains
after improvement takes place [4, 9, 10]. However, legit-
imate privacy concerns are not fully addressed in the
current studies.

Health data reuse
Health data reuse has enormous potential to benefit society
by providing healthcare quality improvement [1–3, 11].
However, it raises legitimate privacy concerns from differ-
ent stakeholders. The reuse of health data is guided by a
variety of controls from both legal and ethical perspectives,
such as privacy rights, data protection regulations, and du-
ties of confidentiality [12]. However, legal measures pose
challenges for the effective reuse of clinical data [13, 14].
Data protection regulations often exempt patient con-

sent for reuse of health data for public health and quality
improvement purposes [15, 16]. However, clinicians are
often reluctant to pursue it due to the privacy concerns
of their patients, themselves, and their institutions [17].
Therefore, data reuse infrastructure must provide solu-
tions for performing data-driven analytics while ensuring
the security and privacy of the people and organizations
that the data represent [18].

Privacy-preserving distributed data mining
Privacy-preserving distributed data mining (PPDDM) is
an emerging approach for processing data distributed

across multiple data sources while protecting privacy
[19–22]. Moreover, PPDDM considers the problem of
running statistical algorithms on confidential data di-
vided among two or more different parties where an al-
gorithm runs on the combined data of the parties’
databases without allowing any party to view the private
data of another party. The statistics generated from the
combined data for a group of healthcare institutions are
revealed, which are not sensitive information. The
PPDDM techniques are developed based on a set of
techniques called secure multi-party computation [23].
The existing PPDDM protocols for computing statis-

tical problems provide different privacy guarantees, effi-
ciency, and scalability [19–22]. Secure protocols often
provide privacy guarantee against semi-honest (honest-
but-curious) adversaries because the adversarial model
allows the designing of secure protocols that are efficient
and scalable compared to protocols that are secure
against other adversarial models that provide a stronger
privacy guarantee [23].
The semi-honest adversarial model assumes that even

if corrupted parties follow a computation protocol speci-
fication, the adversary may try to use the internal state
of the corrupted parties, including the messages ex-
changed during the protocol execution, to learn private
information of other uncompromised parties. The adver-
sarial model is suitable for settings in which parties are
trusted to follow a computation protocol specification
but must run a secure protocol because of legal restric-
tions for data sharing. This model is also useful to pre-
vent accidental leakage. The security guarantee of this
model also ensures that an adversary that gained access
to a party’s database after the execution of a secure
protocol cannot learn private information about legitim-
ate parties [23]. Therefore, the adversarial model pro-
vides a sufficient privacy guarantee in our context while
enabling efficient and scalable computation.
Promising progress has been made in protocol design

and the implementation of cryptographic primitives
fueled by the constant increase in computing power.
Protocols specialized for specific statistical problems
have been developed to improve the protocols efficiency
and scalability, in contrast to the earlier idea of develop-
ing generic solutions. Practical uses of PPDDM exist in
healthcare settings [24–26]; however, these are still
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limited primarily due to the lack of efficiency and scal-
ability required for processing health data in practice.

Use case
The increasing emergence of antibiotic resistance ac-
counts for 700,000 deaths every year worldwide, which
is primarily caused by high and inappropriate consump-
tion of antibiotics [27]. Unless actions are taken, the
number is estimated to increase [28].
International (e.g., the World Health Organization

[29]) and national (e.g., the Norwegian government [30])
initiatives aim to reduce antibiotic use and resistance.
Numerous indicators have been proposed for measuring
antibiotic prescriptions [31–34]. We refer to Add-
itional file 1 for a detailed description of indicators.
In Norway, a GP is responsible for a set of patients

and is expected to diagnose and treat a major proportion
of the patients and refer only those who are in need of
more specialized health services to hospitals for further
assessment and treatment [35]. Thus, Norwegian GPs
are responsible for approximately 80% of antibiotic pre-
scriptions for human use [36]. Therefore, behavioral
changes by GPs have a significant effect on reducing in-
appropriate antibiotic prescriptions.

Objective
The objective of the paper is to propose a distributed
architecture for providing feedback to clinicians on their
clinical performance in comparison to peers across mul-
tiple healthcare institutions while protecting the privacy
of the involved patients, clinicians, and healthcare insti-
tutions. The architecture also aims to support monitor-
ing antibiotic prescriptions at the group level. We aim to
evaluate the feasibility of the architecture in clinical set-
tings using antibiotic prescriptions as a use case.
The proposed architecture uses a PPDDM tool, called

Emnet [37, 38], for computing aggregated performance
indicators of peers across multiple healthcare institu-
tions while protecting privacy. The architecture also uses
a message-oriented middleware, called the Snow system,
for secure communication and coordination among in-
volved entities [39].

Methods
Privacy requirements and assumptions
All data stored at a healthcare institution are potentially
sensitive. Therefore, information about patients, clini-
cians, and healthcare institutions cannot be disclosed
outside the organization that originally recorded the data
(requirement 1). Aggregated information about a clin-
ician, such as performance indicators, is also private in-
formation and should only be accessed by the clinician
(requirement 2). However, statistics generated from the
combined data on a group of healthcare institutions are

not considered sensitive information and, thus, can be
disclosed. This includes aggregated indicators for a
group of clinicians from multiple healthcare institutions.
We assume outside adversaries may compromise a

subset of healthcare institutions by breaking into the
network or compromising employees. Parties under the
control of an adversary are called corrupted parties. We
relied on a standard security assumption called the
semi-honest (honest-but-curious) adversarial model (re-
quirement 3).
We also assumed the existence of a third party, de-

noted as the coordinator, that satisfies the honest-but-
curious adversarial model. The coordinator aids compu-
tations without learning private information (require-
ment 4). We also assume all the entities have a peer-to-
peer secure communication channel.

Architectural design
The proposed privacy-preserving architecture (Fig. 1)
contains a set of software components deployed on a
server running at healthcare institutions and the coord-
inator. Secure communication between software compo-
nents running at multiple entities were supported using
the Snow system [39], which is a message-oriented
middleware. The middleware has communication mod-
ules running at healthcare institutions and the coordin-
ator. The communication module running at each
healthcare institution establishes a secure connection
with the module running at the coordinator, and all
messages between healthcare institutions are relayed
through the coordinator using end-to-end encryption.
The design of the communication middleware satisfies
the requirements of the Norwegian code of conduct for
information security in the healthcare service sector
where all communications with a healthcare institution
should be initiated by the healthcare institution [40].
The main functionalities of the architecture are grouped

into data preparation, scheduling the computation of qual-
ity indicators, computing quality indicators, and generat-
ing feedback reports. Figure 2 describes the data flow
through all the components of the architecture to support
these functionalities. The following sections describe how
the architecture supports these functionalities.

Data preparation
The data sources for generating feedback were electronic
health records (EHRs) of the participating healthcare in-
stitutions, which were proprietary EHR systems. As a re-
sult, the EHR data of each healthcare institution had to
be transformed into a common data model, a data struc-
ture that standardize EHR data across healthcare institu-
tions, and it can be possible to run standardized
programs. To that end, the architecture used the Snow
Medrave Interaction Library Extension (SMILe), which
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was developed in collaboration with Medrave Software
AB [41]. The SMILe running at a healthcare institution
extracts data daily from the local EHR system and trans-
forms and loads the data into the research database. The
research database has a common data model, which we
have defined in an SQL format [42]. As shown in Fig. 2a,
both the original EHR data and data transformed into the
common data format remain at a healthcare institution.
The data transformation of SMILe includes pseudony-

mization, such as removing names, replacing national per-
sonal numbers and health personnel numbers with hash
values, and replacing birthdates with birth years. The
SMILe currently supports data extraction from three Nor-
wegian primary care EHR systems that are the most
widely used. Diagnoses and medical prescriptions in the
EHRs and our research databases were classified according
to the International Classification of Primary Care, Second
Edition (ICPC-2)1 and the Anatomical Therapeutic Chem-
ical (ATC)2 Classification System, respectively.

Scheduling feedback
The architecture provides support for scheduling com-
putations, such as computing quality indicators and gen-
erating feedback to clinicians, which is done by storing
computation specifications at the coordinator. At the

specified time, the mission scheduler executes a scheduled
computation, denoted as a mission, by sending the mis-
sion specification to the appropriate software component
(i.e., the indicator computation agent or benchmarking
agent). The mission scheduler receives the mission status
from the responsible components and maintains an over-
view of the overall computations in the system.

Computing quality indicators
The benchmarking agent (Fig. 2c) running at each health-
care institution computes the quality indicators of a clin-
ician against the research database of the institution. The
quality indicators are stored within the institution and
cannot be revealed to anyone except the clinician to pro-
tect privacy. Therefore, the quality indicators are stored
with a clinician pseudonym that is a secure hash of the
health personnel number of the clinician.
Quality indicators of a group of peers across health-

care institutions (e.g., GP practices) are computed
against distributed research databases. To that end, the
architecture uses a PPDDM tool, called Emnet3 [37, 38].
Emnet is secure against semi-honest adversaries and
supports the computation of various statistics. As shown
in Fig. 2b, the tool consists of the Emnet coordinator
and workers components that run at the coordinator
and healthcare institutions, respectively. The Emnet

Fig. 1 Privacy-preserving architecture for providing feedback to clinicians. Arrows indicate directions of information flow

1The ICPC-2 code can be found at https://ehelse.no/kodeverk/icpc-2
e%2D%2Denglish-version.
2The ATC codes can be found at https://www.atccode.com/.

3Emnet is an Amharic word for trust. Amharic is the official language
of Ethiopia.
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coordinator receives queries (i.e., dataset creation and
statistical computation) and broadcasts to Emnet workers.
Each Emnet worker executes a dataset creation query
against the local research database and locally stores the
query results. The Emnet coordinator and workers jointly
execute statistics queries on datasets distributed across
healthcare institutions while protecting privacy. Emnet co-
ordinator stores statistics results in the statistics database
running at the coordinator.
A quality indicator of a group of peers is computed in

two steps (Fig. 2b and c). First, Emnet [37] computes aggre-
gated statistics on data distributed across healthcare institu-
tions and stores the results in the statistics database, which
is located at the coordinator. Second, the indicator compu-
tation agent computes indicators based on the results of
Emnet and stores the results in the statistics database.

The percentage of respiratory tract infections (RTIs) cases
treated with an antibacterial for systemic use (ATC= J01) is
computed as follows. Emnet computes the number of cases
diagnosed with RTIs (#cases) and the number of cases in
which antibiotics were prescribed (#prescriptions). Then, the
indicator computation agent computes the indicator based
on the results of Emnet, (#prescriptions/ # cases) ∗ 100.

Generating feedback reports
After the benchmarking agent computes the perform-
ance indicators for a clinician, it sends a notification
email regarding the availability of the feedback report to
the clinician. As shown in Fig. 2d, clinicians access their
feedback reports via a web client. Feedback reports of
the currently logged-in clinician are generated on de-
mand to restrict access. Feedback reports are generated

Fig. 2 Data flow diagram for generating feedback reports
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based on a report template using a clinician’s indicators
and the aggregated quality indicators of their peers,
which are retrieved from the statistics database through
the indicator web service. Only the respective clinician
can view feedback reports and download as pdf files.
Feedback reports contain tables and graphs that enable the

comparison of clinicians’ quality indicators with the aggre-
gated quality indicators of their peers over time. A report
also contains background information, such as a description
of the peers and information about the relevant guidelines.
We provide a sample feedback report on antibiotic prescrip-
tions for an anonymous GP4 in Additional file 2.

Implementation
The implementation of Emnet (implemented in Java) was
outside the scope of the current paper, except for minor
improvements. The other software components were im-
plemented in Java. A MySQL database was used for the
research database and statistics database. In addition, Hi-
bernate was used to map the object-oriented data model
to the relational database. The indicator web service was a
restful web service implemented using Spring. Extensible
Markup Language (XML) was used for specifying mis-
sions, and JavaScript Object Notation (JSON) was
employed to specify the Emnet messages. The Snow sys-
tem [39], a middleware for secure communication and co-
ordination among involved entities, was implemented
outside the scope of the current paper using the Exten-
sible Messaging and Presence Protocol (XMPP) [43].

Study design
Setup
We deployed the proposed architecture across three
GP offices in Norway, and the coordinator was de-
ployed at the University Hospital of North Norway.
The number of GPs in the three GP offices varied
over time, and 21 GPs agreed to receive a feedback
report. The GPs had a total of 20,245 patients on
their lists. The number of registered patients also var-
ied during the study period because patients change
their regular GPs from time to time.
The coordinator was deployed on an Intel Xeon X3220

2.4 GHz quad-core processor with 8 GB of RAM with
Ubuntu 14.04. The software components at the two of
the GP offices were deployed on an Intel i5-5300U 2.3
GHz dual-core processor with 8 GB of RAM with Win-
dows Server 2012 R2. The software components at the
third GP office were deployed on an Intel i5-5300U
2.3 GHz dual-core processor with 16 GB of RAM with
Windows Server 2012 R2.

Antibiotic prescription feedback for clinicians
We applied the proposed architecture for generating
feedback on the antibiotic prescriptions by the GPs for
RTIs for which an antibiotic is generally not recom-
mended. The selected RTIs are consultations for acute
upper respiratory infection (ICPC-2e = R74), acute sinus-
itis (ICPC-2e = R75), acute laryngitis/tracheitis (ICPC-
2e = R77), acute otitis media/myringitis (ICPC-2e = H71),
and unspecified respiratory infections (ICPC-2e = R83).
Acute bronchitis (ICPC-2e = R78) was also included be-
cause it is most often a viral infection, and the use of an
antibiotic is rarely recommended.
Each GP received one feedback report in 2019 that cov-

ered the GP’s antibiotic prescriptions for the selected RTIs
combined and each of the diagnoses separately between
2015 and 2018. All of the statistics in the report were
stratified by year and antimicrobial spectrum (broad- and
narrow-spectrum antibiotics). Narrow-spectrum antibi-
otics include fenoxymetylpenicillin (J01CE), and broad-
spectrum antibiotics include tetracyclinces (J01A), broad
spectrum penicillines (J01C except J01CE), cephalosporins
(J01D), trimetoprim and sulfonamides (J01E), macrolides
(J01F), and quinolones (J01M).
The feedback reports contain tables that present the

number of cases diagnosed. The reports also contain the
following indicators (based on the indicators proposed
by the European surveillance of antimicrobial consump-
tion [34]) for all the selected RTIs combined and each of
the diagnoses separately:

� The percentage of diagnosed cases treated with an
antibacterial for systemic use;

� The percentage of cases treated with narrow-
spectrum antibiotics among all diagnosed cases
treated with antibiotics; and

� The percentage of cases treated with broad-
spectrum antibiotics among all diagnosed cases
treated with antibiotics.

We refer interested readers to Additional file 1 for
more information about the indicators computed in the
current study. The indicators were presented as a time
series graph comparing the performance indicators of a
GP with the average performance indicators of all par-
ticipating GPs. In this study, each GP received a single
feedback report as an encrypted pdf file through email,
and a decryption key was sent through the GP’s phone.

Monitoring group-level antibiotic prescriptions
The architecture is intended to enable monitoring of the
quality of care (e.g., antibiotic prescriptions) at the group
level. Measuring the effects of interventions involves
computing indicators for the intervention group, before
and after receiving feedback and for the control group.

4Feedback report of the anonymous GP was included with a written
permission of the GP.
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The current study only assessed antibiotic prescription in-
formation before the GPs received feedback. We com-
puted the percentage of antibiotic prescriptions of the
three GP offices for the selected RTIs combined. We also
calculated the percentages of broad- and narrow-
spectrum antibiotic prescriptions. Then, we computed the
percentage of antibiotic prescriptions for each of the diag-
noses separately. All the statistics were yearly stratified.

Computation time
We evaluated the efficiency of the architecture by meas-
uring the time the architecture took to generate feed-
back reports. We ran each computation five times and
reported the average computation time. We measured
both the total and sub-computation times.

Ethics
The regional ethics committee of north Norway stated
that a quality improvement study does not require eth-
ical approval [44]. In addition, the study was exempt
from seeking ethical approval because the objective of
the antibiotic study was to evaluate the feasibility of our
architecture in practice. Although the General Data Pro-
tection Regulation (GDPR) is incorporated into Norwe-
gian law, the Norwegian patient record law is still
applicable [16] because the GDPR allows possibility to
introduce more specific national rules [45]. The Norwe-
gian patient record law exempts patient consent for
quality improvement purposes. Therefore, our study did

not require ethical approval and consent from patients.
However, we have received approvals from the GPs.

Results
Security analysis
The architecture computes group-level indicators of
peers across healthcare institutions using Emnet [37],
which does not reveal sensitive information of patients,
clinicians, healthcare institutions. The performance indi-
cators of a clinician are computed within a healthcare
institution, and access to feedback reports for a clinician
is protected with secure authentication. Therefore, the
architecture satisfies both privacy requirements 1 and 2.
The architecture reveals statistics generated from the
combined data of multiple healthcare institutions, which
are not considered sensitive information. The architec-
ture also satisfies requirement 3 and 4, since Emnet is
secure against semi-honest adversary [37].

Antibiotic prescription feedback for clinicians
Feedback reports were provided to 21 GPs in 2019. The
feedback provided to the GPs was a single pdf report on
their antibiotic prescriptions for treating selected RTIs
between 2015 and 2018. The indicators were stratified
by year, diagnoses, and antibiotic spectrum. We refer in-
terested readers to a sample feedback report of an an-
onymous GP provided as Additional file 2.
Figure 3 shows the antibiotic prescriptions of an an-

onymous GP for the selected RTIs in comparison to his

Fig. 3 Antibiotic prescriptions for respiratory tract infections by an anonymous general practitioner in comparison to peers
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or her peers, which is extracted from the pdf report pro-
vided to the GP. The changes in antibiotic prescribing
habits shown in the figure were not caused by our feed-
back reports because the changes occurred before the
feedback reports were provided to the GPs.

Monitoring group-level antibiotic prescriptions
This section reports changes in the antibiotic prescrip-
tions of a group of three GP offices between 2015 and
2018 (Table 1), which occurred before the GPs received
feedback reports generated in the current study. Overall,
there were 14,396 cases of the selected RTIs and 6200
unique patients. Of these cases, 2924 (20.3%) cases were
treated with an antibiotic, and 40.8% (1194) of the anti-
biotic prescriptions were broad-spectrum antibiotics.
Antibiotic prescriptions decreased from 22.9% in

2015 to 17.9% in 2018 (absolute difference, 5%), and
broad-spectrum antibiotic prescriptions decreased
from 49.4 to 31.9% (absolute difference, 17.5%) dur-
ing the study period.
Figure 4 shows the antibiotic prescriptions stratified by

the RTIs selected in the study. Antibiotic prescriptions
for acute upper respiratory infections decreased from
12.60% in 2015 to 9.31% in 2018 (absolute difference,
3.28%) and acute bronchitis decreased from 27.33 to
16.10% (absolute difference, 11.23%). In contrast, anti-
biotic prescriptions for acute sinusitis increased from
44.30 to 45.84% (absolute difference, 1.54%) and acute
otitis media/myringitis increased from 48.15 to 55.19%
(absolute difference, 7.05%).

Computation time
Generating feedback reports involve multiple rounds,
such as the dataset creation where each GP office exe-
cutes the query and locally stores the results, the statis-
tical computation of the distributed data, and the
generation of the feedback reports. The system took
13.3 s to execute a dataset creation query for the selected
RTIs across the three GP offices. It took 13.7 s and 20.5
s to compute the number of RTIs cases and the cases
treated with an antibiotic, respectively. In total, the sys-
tem took 49.03 s to calculate the percentage, stratified by
year, of RTI cases treated with an antibiotic. The

benchmarking agent took 14 s to compute all of the indi-
cators stratified by year for a GP. The generation of a
pdf report based on the indicators of the GP and the ag-
gregated indicators of peers took 15 s.

Discussion
Privacy-preserving architecture
The paper proposed a privacy-preserving architecture
that enables clinicians to compare their clinical perform-
ance with peers across multiple healthcare institutions,
and to monitor the quality of care at the group level.
De-identification is a common approach to protecting

privacy during centralized data collection. De-
identification requires a balance between data utility and
privacy where strong privacy protection necessitates sig-
nificant alterations to the data that considerably lower
the data utility [46]. For example, an address may need
to be generalized to a higher geographic location to pro-
tect privacy, but it limits possible stratifications of the
data analysis. In contrast, our solution protects privacy
without compromising data utility. It is also possible to
infer private information about the institution from a
de-identified data, which may not be acceptable by the
institution [26], whereas our architecture also protects
the privacy of the healthcare institutions.
The privacy-preserving distributed computation pro-

vided by Emnet [37] is efficient and scalable because the
data sources locally perform record-level computations
in parallel, and distributed secure computations are only
executed to combine the local results. We found that
computing the number of patients diagnosed with RTIs
and treated with antibiotics across three GP offices took
13.7 s and 20.5 s, respectively. The computation time is
acceptable, especially for scheduled computations where
the results are not expected immediately.
The proposed architecture does not require extrac-

tions of data outside healthcare institutions. As a result,
healthcare institutions maintain physical access control
concerning deciding who can access a specific dataset,
when the dataset can be accessed, what analysis can be
performed on the dataset, and so on. Healthcare institu-
tions may have different local data-access requirements
[47]. Thus, the requirements for data processing should

Table 1 Antibiotic prescriptions for respiratory tract infections

Year Number of RTIsa cases Number of antibiotic
prescriptions (%)

Number of narrow-spectrum
antibioticb prescriptions (%)

Number of broad-spectrum
antibioticc prescriptions (%)

2015 3121 713 (22.9) 361 (50.6) 352 (49.4)

2016 3339 722 (21.6) 412 (57.1) 310 (42.9)

2017 4034 790 (19.6) 481 (60.9) 309 (39.1)

2018 3902 699 (17.9) 476 (68.1) 223 (31.9)
a Respiratory tract infections (RTIs) include ICPC-2e = R74, R75, R77, R78, R83, and H71
b Narrow-spectrum antibiotics include ATC = J01CE
c Broad-spectrum antibiotics include ATC = J01A, J01C (except J01CE), J01D, J01E, J01F, J01M, and J01XX05
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be at least as restrictive as all the individual healthcare
institutions.
The architecture currently supports data-access con-

trol based on manual reviews of data analysis re-
quests, which is similar to the approach used in
several distributed health data reuse networks [48].
Existing techniques allow data controllers (i.e., healthcare
institutions) to define their data-access requirements that
enable enforcing automated access control [49, 50].

Privacy-preserving feedback on clinical performance
The architecture was implemented and deployed in
three Norwegian GP offices, and it was applied to pro-
vide feedback to GPs on their antibiotic prescriptions for
the selected RTIs. We provided a single feedback report
to 21 GPs.
Studies have shown the positive effects of feedback

that compares a clinician’s performance with peers for
behavioral changes in healthcare providers [5, 7, 8].
However, existing studies have been based on a central-
ized collection of data from participating healthcare in-
stitutions, which may raise privacy concerns. In addition,
the outcomes of the study interventions might have been
influenced by the fact that the subjects were being ob-
served. However, our architecture provides feedback
while protecting the privacy of clinicians, which may
minimize such biases.
The usefulness of comparison with peers depends on

the representativeness of the participating peers. Studies

have shown that healthcare providers are often reluctant
to share their data when they have privacy concerns
[17]. Therefore, providing privacy protection may in-
crease the willingness of healthcare providers to partici-
pate and, consequently, improve the representativeness
of participating healthcare providers and the relevance
of comparison with peers.

Privacy-preserving monitoring of the quality of care
The architecture enables monitoring of the absolute differ-
ence in quality indicators for a particular group between
two time points, which allows measuring the change in
quality indicators before and after an intervention. We ap-
plied the architecture to measure changes in the antibiotic
prescriptions of three GP offices between the year 2015 and
2018. Health authorities and policymakers can use the
architecture to monitor the quality of care and the effects
of education or regulatory interventions over time.
Studies evaluating the effects of interventions have

been based on the centralized collection of data from all
participating institutions, which is the same way they
generated feedback to the clinicians [5, 7, 8]. In contrast,
our architecture does not centrally collect data, and it
protects privacy. However, our architecture must be
extended with support for more statistics. For example,
privacy-preserving distributed statistical tests are re-
quired to determine whether there are any statistically
significant differences between the intervention and
control groups.

Fig. 4 Antibiotic prescriptions for respiratory tract infections across three Norwegian general-practitioner offices
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Limitations
Several studies have shown that the comparison with
peers has a positive effect on behavioral change [4–8].
Whether regression towards the mean of peers is good,
however, depends on the excellence of the peers’ prac-
tice, which may not always be taken for granted. None-
theless, healthcare providers have legitimate privacy
concerns [17]. However, the perception of healthcare
providers toward our solution and its effect on their be-
havioral changes was not evaluated.
We assumed that the patient population served by a

group of clinicians was homogenous. However, clinicians
may often treat specific patient groups, for example,
children and elderly individuals. To that end, we plan to
extend the current implementation of the architecture to
support the stratification of feedback reports based on
such characteristics as age, sex, and health conditions.
We also assumed that all participating institutions are

online at any given time, which held true for the three
GP offices involved in our study. However, as the num-
ber of participating healthcare institutions increases, so
does the number of offline institutions at any given time.
The other challenge is whether the PPDDM scales as

the number of participating institutions increases by a
large magnitude. For example, thousands of GP offices
exist in Norway. We have proposed a technique that can
scale Emnet to a very large number of data sources, but
it is not yet implemented [38].
The architecture currently supports the generation of

feedback reports that compare the clinical performance
of a clinician with average peer performance. We plan to
extend the architecture with a secure protocol for com-
puting whether a clinician is a top-10% performer, which
is known to influence behavioral change [5].
The proposed architecture has several benefits. How-

ever, its implementation, deployment, and management
are more complex than solutions based on a centralized
collection of data.

Conclusions
We have demonstrated the feasibility of generating
feedback to clinicians that enables them to compare
their own performance with that of their peers while
protecting privacy. Comparisons with peers are known
to be efficient for quality improvement. The compari-
son with peers across multiple healthcare institutions
is especially more important for smaller healthcare in-
stitutions, such as GP offices, where few peers within
an institution are available to make a comparison. We
also demonstrated the feasibility of monitoring the
quality of services at a group level that enables evalu-
ating the effects of education or regulatory interven-
tions over time.
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1186/s12911-020-01147-5.
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