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Abstract

Backgrounds: Knowledge discovery from breast cancer treatment records has promoted downstream clinical
studies such as careflow mining and therapy analysis. However, the clinical treatment text from electronic health data
might be recorded by different doctors under their hospital guidelines, making the final data rich in author- and
domain-specific idiosyncrasies. Therefore, breast cancer treatment entity normalization becomes an essential task for
the above downstream clinical studies. The latest studies have demonstrated the superiority of deep learning
methods in named entity normalization tasks. Fundamentally, most existing approaches adopt pipeline
implementations that treat it as an independent process after named entity recognition, which can propagate errors
to later tasks. In addition, despite its importance in clinical and translational research, few studies directly deal with the
normalization task in Chinese clinical text due to the complexity of composition forms.

Methods: To address these issues, we propose PASCAL, an end-to-end and accurate framework for breast cancer
treatment entity normalization (TEN). PASCAL leverages a gated convolutional neural network to obtain a
representation vector that can capture contextual features and long-term dependencies. Additionally, it treats
treatment entity recognition (TER) as an auxiliary task that can provide meaningful information to the primary TEN task
and as a particular regularization to further optimize the shared parameters. Finally, by concatenating the
context-aware vector and probabilistic distribution vector from TEN, we utilize the conditional random field layer
(CRF) to model the normalization sequence and predict the TEN sequential results.

Results: To evaluate the effectiveness of the proposed framework, we employ the three latest sequential models as
baselines and build the model in single- and multitask on a real-world database. Experimental results show that our
method achieves better accuracy and efficiency than state-of-the-art approaches.

Conclusions: The effectiveness and efficiency of the presented pseudo cascade learning framework were validated
for breast cancer treatment normalization in clinical text. We believe the predominant performance lies in its ability to
extract valuable information from unstructured text data, which will significantly contribute to downstream tasks,
such as treatment recommendations, breast cancer staging and careflow mining.
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Background
Breast cancer is one of the leading cancers with a high
mortality rate. WHO reported that it is the second most
common cause of cancer death in women [1]. In particu-
lar, developing countries are suffering from an increasing
breast cancer epidemic with a growing number of younger
women who are susceptible to cancer. Fortunately, the
mortality rate caused by breast cancer has significantly
decreased in recent years due to the increased emphasis
on early detection and the development of more effective
treatment [2]. Additionally, the widespread application
of modern medical devices has accumulated large-scale
electronic health record (EHR) data, especially historical
breast cancer treatment records, which create a foun-
dation for drug therapy analysis, regimen adjustment,
and careflow mining [3]. Consequently, breast cancer
patients can receive better healthcare and more accurate
treatment.
Additionally, traditional machine learning methods and

more advanced deep learning methods have deeply accel-
erated the process of discovering underlying patterns or
structures in EHR data. For instance, in the treatment pre-
diction field, Yadav et al. [4] proposed a framework that
uses a decision tree and support vector machine algo-
rithm to identify patients who need urgent chemotherapy.
For breast cancer diagnosis, Wang et al.[5] developed a
comprehensive diagnosis tool by mining heterogeneous
EHR data, such as physical examination results, patient
clinical backgrounds, histories and features of mammog-
raphy images. For prognosis, [6] employed three different
machine learning methods to predict breast cancer sur-
vivability, which can assist in providing reasonable treat-
ment for patients. In summary, the application of machine
learning methods has largely improved the quality of
patient care and reduced the misdiagnosis rate for breast
cancer.
Currently, most existing work on breast cancer treat-

ment mining mainly relies on structural features or man-
ually designed features based on EHRs in the English
language. However, the widespread use of electronic med-
ical devices in China has generated a considerable number
of EHRs ranging from structured information to unstruc-
tured clinical text. As shown in Fig.1a, the EHR data might
come from various hospitals and be recorded by different
doctors under their own guidelines, thus making the final
data rich in author- and domain-specific idiosyncrasies,
acronyms and abbreviations. For instance, clinical physi-
cians use “EC×4-TH×4” and “EC TH” to denote
the same treatment “EC-TH” (as shown in Fig. 1c). The
complex character composition represents the specific
treatment process in real clinical texts, which is helpful
for future reference. In general, physicians use the fewest
characters with the most powerful expressive ability in the
treatment texts. Taking treatment “EC×4-TH×4” as an

example, “×4” represents that the patient should adopt the
EC as the first four chemotherapy regimens and employ
the TH regimen as the subsequent four chemotherapy
regimens.
However, such data hampers the development of

advanced applications for breast cancer, such as treat-
ment recommendation, treatment effect prediction, prog-
nosis prediction and smart visualization in the era of big
data. At present, uniform features have been utilized to
avoid repetitive features and reduce noisy data, which
can contribute to higher algorithm accuracy. For instance,
standardized data have been used to solve the data iso-
lated islands problem with the help of federated learning
[7, 8]. Therefore, as shown in Fig. 1c, we need to normalize
the medical terms in the left real-world data (Fig. 1b) to
the right normalized term. Namely, despite various deno-
tations for each treatment from the clinical text, accord-
ing to the practical necessity, they must be mapped to
a corresponding unified expression that generally comes
from the authoritative reference such as GUIDELINES
[9]. In our work, we call this a nontrivial problem (i.e.,
mapping the treatment entities to codes in a relevant
controlled vocabulary) the treatment entity normalization
task (TEN). Note that if the treatment entity is in the
clinical text, we should first recognize the entity’s bound-
aries, which is called the treatment entity recognition task
(TER). As shown in Fig. 1b, for the treatment “EC TH

” from the clinical text, we first recognize its position
(TER task) and then map it to the unified term “EC-TH”.
At present, this is a challenging task for three reasons.

First, the normalization process is tedious and time con-
suming via manual handling, thus requiring specifically
designed data-driven approaches. Second, the medical
entities are closely related to the contexts of clinical text,
which provide a further description and should be taken
into account when designing the algorithms, as shown in
Fig. 1b. Finally, the inputs are mixed Chinese and English
sentences (Fig. 1c), which make it more difficult to iden-
tify the entity boundaries. As a result, the development
of computational methods concerning TEN has been hin-
dered. In addition, researchers primarily focus on the
named entity recognition task that determines the bound-
aries of medical entities, such as [10–13], while few studies
directly deal with medical named entity normalization
(MEN), especially for Chinese, due to the complexity of
Chinese characters.
Nevertheless, researchers have proposed several meth-

ods, such as machine learning-based methods and joint
learning-based methods, to address the named entity nor-
malization problems. For example, Leaman et al. [14]
were the first to introduce machine learning approaches
to address the problem by pairwise learning. Leaman
et al. [15] and Lou et al. [16] addressed these problems
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Fig. 1 Illustration of clinical text, normalization examples and possible applications. a EHR data; b Clinical text from EHRs : an example of real clinical
text and translated version; c Real-world data and standard entity; d Applied scenarios

by jointly modeling recognition and normalization. Zhao
et al. [17] proposed a deep neural multitask learning
method with explicit feedback strategies to obtain opti-
mal performance. However, all of the above methods
are specifically designed for English-based entity normal-
ization and recognition, such as from “CEF×3-P×3” to
“FEC-P” in Fig. 1c. Chinese MEN is much more difficult
than English owing to the complexity of Chinese compo-
sition forms and lack of word boundaries [18]. Moreover,
the real-world public datasets in Chinese related to health
informatics are almost nonexistent, which has been a bot-
tleneck to the development of text mining algorithms in
the Chinese domain. Additionally, in the Chinese medi-
cal named entity normalization domain, some researchers
have developed algorithms by cooperating with hospi-
tals. For instance, Luo et al. [19] introduced a multiview
convolutional neural network to address the normaliza-
tion of diagnostic and procedure names simultaneously.
Likewise, Zhang et al. [20] presented an unsupervised
framework to normalize the Chinese medical concept by
combining disease text with comorbidity. However, the
inputs of the networks are just Chinese medical terms,
such as various name expressions for the same disease, not
informative clinical sentences.
Furthermore, with the increasing quantity of training

data, some researchers have begun to seek efficient learn-
ing algorithms, especially in the industrial field, such
as [21]. In language modeling, many researchers [22,
23] attempt to leverage convolutional neural networks
to replace traditional recurrent neural networks, which
enable parallelization over the elements of sequences.
Such approaches significantly promote computational
efficiency compared with BiLSTM [24], which requires

sequential modeling. In addition, to further improve the
language model performance, Shen et al. [25] integrated a
novel recurrent architecture with an explicit bias towards
modeling a hierarchy of constituents, which can bet-
ter extract the hidden hierarchical information in the
sentence. In addition, with the advancement of health
informatics research, the practical significance is becom-
ing much more important, and it has brought about
the necessity for computational efficiency. Therefore, we
should maintain a balance between the computational
precision and efficiency when developing such a frame-
work.
To address the aforementioned challenges, we propose

a pseudocascade learning framework (PASCAL) with a
gated convolutional neural network (GCNN) [23] and
conditional random field (CRF) [26] for breast cancer
treatment entity normalization in Chinese clinical text,
which fully takes advantage of the contextual information
mainly in Chinese and sequential interactive information.
Specifically, the main contributions of our work can be
summarized as follows:

• We propose PASCAL, an end-to-end, accurate and
efficient framework with GCNN and CRF to
normalize breast cancer treatment, which fully makes
use of the sequential interactive information and
implicit context information in Chinese clinical text.
To the best of our knowledge, this is the first work to
introduce GCNN and CRF specialized for TEN.
Moreover, the experiments on a large real-world
breast cancer EHR dataset illustrate the effectiveness
and efficiency of the framework.

• In the pseudo cascade structure, we incorporate TER
into the framework as an auxiliary task to propagate
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useful implicit information and assist in optimizing
the shared parameters. The final experimental results
prove the necessity of the auxiliary recognition task.

• We present a biased loss function with an adjustable
parameter γ to strategically optimize the parameters
and seek an optimized balance between the
contributions of assistant optimization and providing
information.

Materials and problem definition
Chinese medical named entity normalization (TEN) aims
to map different medical terms from Chinese clinical text,
as shown in Table 1, onto a controlled vocabulary, which
can be regarded as a multiclass learning task. Neverthe-
less, the ambiguity in the boundary of Chinese words can
cause segmentation errors, which could introduce noise
into the downstream task. Considering this, we label the
sequence at the character level to mitigate the error trans-
mission. In addition, we incorporate an auxiliary task TER
to further assist in regulating the parameters from shared
layers. Next, we introduce the input and output of the
TEN task and describe the primary definitions of the
problem.

Input and output data
Owing to the complexity of the real-world database,
we extract the clinical notes from EHRs. Let D ={
p1,p2, ...,pn

}
denote the patients from the EHR. pi

= {v1, v2, ..., vk} is the i-th patient, where vk denotes
a visit encounter and k is the number of visits for
the patient. For a visit vk , it might generate multi-
ple treatment records {X1,X2, ...,Xl} for the therapy
of breast cancer, where l represents the number of
treatments in a visit. We treat the records as dif-
ferent input sequences. As shown in Table 1, the
input clinical text Xl it contains multiple characters
{x1, x2, ..., xN }, where N denotes the number of charac-
ters in a sequence. The labels, namely, standard entities,
are from the standard treatment regimens database C ={
r1, r2, ..., rj

}
, where rj is an entity and j is the number of

entities.

Problem definition
The Chinese EHRs contain various mentions about the
same entity because the data can come from various
hospitals and be recorded by different doctors under
their own guidelines. Therefore, the aim of TEN is to
map the mention with a nonstandard name to a speci-
fied controlled vocabulary from the treatment regimens
database R:

(y1, y2, ..., yN ) = f (x1, x2, ..., xN ) (1)

where y1, y2, ..., yN ∈ R is the normalized entity from
the treatment regimens database, x1, x2, ..., xN is the input
characters from a clinical sentence, and N is the number
of characters in one clinical sentence Xl. In this one-vs-
one method (character-vs-label), we can not only ensure
the correctness of normalization but also understand the
location of the treatment entity.

Methods
In this section, we present a pseudo cascade learning
framework with gated convolutional networks and a con-
ditional random field to address the TEN task. As shown
in Fig. 2, the model is composed of four key modules:
embedding layer, GCNN encoder module, pseudo cas-
cade structure, and the CRF layer. First, the embedding
layer projects the Chinese characters into dense vector
representations. Then, the representations are fed into the
encoder GCNN to capture the contextual relationships
and long-term dependencies by the convolutional net-
work and gating mechanism. After obtaining the contex-
tual features, a pseudo cascade structure, which includes
a softmax layer, an auxiliary TER layer and an information
fusion layer, is utilized to obtain the fused information
vector representation. Finally, to obtain more accurate
normalization outcomes, we deploy a CRF layer due to
its superiority in capturing the internal and contextual
relationships within labels. Subsequent sections detail the
components of the pseudo cascade learning framework
(PASCAL).

Table 1 An illustration example of TEN in a clinical text

Clinical text Real text:

Translated text: After admission, the relevant examination was improved, without chemotherapy

contraindications, and EC sequential TH regimen was given to assist chemotherapy. The patient

reported nausea, vomiting and dysphagia, and provided Dolasetron mesylate injection. After

chemotherapy, there was no obvious side effect, and life sign was stable;

Characters sequence ... E C T H ...

Standard entity ... O EC-TH EC-TH EC-TH EC-TH EC-TH EC-TH O O ...
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Fig. 2Main architecture of PASCAL model. PASCAL consists of four modules: character embedding module, encoder module (containing a gated
convolutional neural network to learn the shared representation with temporal relationship), pseudo cascade structure module (including the
enhanced primary task TEN and an auxiliary task TER)

Embedding layer
As discussed in “Materials and problem definition”
section, Chinese sentences have their nature without sep-
arators between words, and word segmentation is usually
treated as the first step for clinical test mining. Word
segmentation can cause ambiguity in the boundaries of
Chinese words. To address the above problems, our pro-
posed PASCAL is based on the character level input to
avoid introducing noise caused by segmentation errors.
Formally, as shown in Table 1, given a clinical treatment
sentence Xl = {x1, x2, ..., xN }, The model first maps the
characters to dense embedding representations. Specifi-
cally, the character embedding ei ∈ R

de is extracted from
embedding matrix W e ∈ R

|N |×de that can be learned for
every character xi, where i ∈ {1, 2, ...,N} and de is a hyper-
parameter denoting the embedding size. Then, the char-
acter embedding vectors can be treated as a sequence that
is fed into the encoder to mine more complex relations.

Gated convolutional neural network module
As shown in Fig. 2, the gated convolutional neural network
(GCNN) is selected as the encoder of PASCAL, and the
detailed substructures are shown in Fig. 3. In the figure,
GCNN consists of three blocks, including a convolutional
block, a gating block and a residual connection, which
enable the GCNN to capture the contextual relationships
and long-term dependencies in an efficient manner.
As shown in Fig. 3a, the input to the convolutional block

is a sequence of character embeddings C = {e1, e2, ..., eN },

where C ∈ R
|N |×de , |N | is the number of characters, and

de is the embedding size. Then, the matrix C is sent to
the one-dimensional convolutional neural network, and
finally, we obtain the outputs B = C ∗ W + b and G =
C ∗M+ g, whereW,M ∈ R

k×de×dh , b ∈ R
dh and g ∈ R

dh

are the parameters to be learned. Furthermore, dh denotes
the output dimension, and k denotes the patch size in the
convolutional process.
Following the convolutional operation is the gating

block, as shown in Fig. 3b, in which a gated linear unit
(GLU) [23] is utilized to control the information flows by
selecting features through a sigmoid activation function:

hl (C) = B � σ (G) , (2)

where hl is the output of one hidden layer. � is the ele-
mentwise product between matrices, and σ is the sigmoid
activation function.
Finally, considering the computational efficiency, a

residual connection [27] is further added to the block,
which means that the final output consists of two parts,
the output of GLU and the input of the block. Thus,
C + hl (C) is the final output of the l-th layer.

Pseudo cascade structure
One limitation of pipeline approaches is that the errors
from TER propagate to subsequent TEN tasks. There-
fore, we present the pseudo cascade learning structure
that can mitigate the adverse impact and enhance the
positive effect. As shown in [28], the auxiliary tasks can
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Fig. 3 Detailed structure of encoder module: gated convolutional neural network (GCNN). GCNN consists of three key parts: convolutional block,
gating block and residual connection

be regarded as a kind of regularization to boost the
performance of the main tasks. In addition, [29] adds
unsupervised auxiliary tasks to improve the outcomes of
emotional attributes. Likewise, we leverage the auxiliary
task as an additional regularization to assist the primary
tasks, both of which constitute the pseudo cascade learn-
ing structure. The detailed architecture is described as
follows.
First, the encoder GCNN generates informative fea-

ture vectors with contextual relationships and long-term
dependencies. Then, as shown in Fig. 2, they are fur-
ther fed into the pseudo cascade structure to fulfill two
tasks: Chinese medical named entity recognition (TER, an
auxiliary task) and Chinese medical named entity normal-
ization (TEN, the primary task). Although the TER task
is assistant, it is indispensable for the regularization of
shared parameters and the transmission of useful infor-
mation. In addition, the pseudo cascade structure also
includes the softmax activation layers and the critical CRF
layer.

Auxiliary task: TER
In the auxiliary task TER, to recognize themedical entities
yr1, y

r
2, ..., y

r
i , we take the informative feature vectors H =

{h1,h2, ...,hN } from the encoder GCNN as the input.With
the help of a linear layer and a softmax layer, we can obtain
the recognized entity:

ŷri = softmax
(
Wrhi + br

)
, (3)

where ŷri is the recognized entity, Wr ∈ R
dr×dh , br ∈ R

dr

are the learned parameters, and hi ∈ R
dh is the i-th

input vector. ŷri is regarded as additional information to be
transmitted to the primary task.

Primary task: enhanced TEN
As mentioned above, in the primary task, we not only
leverage the information from the encoder GCNN, H =
{h1,h2, ...,hN } but also utilize the information from the
auxiliary TER task. To be more specific, we directly take
advantage of the concatenation method to integrate them:

hci = [
hi, ŷri

]
. (4)

where hci denotes the input of the next CRF layer, ŷri is the
recognized entity, hi is the output of the encoder GCNN
and ŷri is the predicted outcome from the auxiliary TER
task. Therefore, the input of the CRF layer can be defined
asHc =

{
hc1,h

c
2, ...,h

c
N

}
.
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CRF layer To better utilize the contextual information
and obtain the optimum global path, we leverage CRF [26]
tomodel the normalization sequence and predict the TEN
sequential results.
The label sequence of characters is denoted as Y =[
y1, y2, . . . , yN

]
, where yi ∈ R

|C| is the i-th character’s
label with one-hot representation and |C| is the num-
ber of treatment regimens in the database. The input of
the CRF layer is the integrated representation, namely,
Hc =

{
hc1,h

c
2, ...,h

c
N

}
. Moreover, the CRF is a probabilistic

model, and the conditional probability of Y given inputHc

is calculated as follows:

p
(
Y|Hc; θ

) =
∏N

i=1 ψ
(
hci , yi, yi−1

)

∑
y′∈Y(s)

∏N
i=1 ψ

(
hci , yi′, yi−1

′) , (5)

where Y(s) denotes the set of all possible label sequences
under a given sentence, θ denotes the learned parameters,
and ψ

(
hci , yni , yni−1

)
denotes the potential function:

ψ
(
hci , yi, yi−1

) = exp
(
yTi WThci + yTi Tyi−1

)
, (6)

where W ∈ R
|dr+dh|×|C| and T ∈ R

|C|×|C| are the learned
parameters, both of which constitute θ in Eq. (5).

Biased loss function
To enhance the performance of TEN, we present a biased
loss function for the pseudo cascade learning framework,
which can partially influence the optimization process by
adjusting the proportion of TEN loss and TER loss.

TER loss
For auxiliary task TER, we employ the binary cross-
entropy between the ground truth label yri and the pre-
dicted ŷri as the objective loss function:

LTER = −
N∑

i=1

(
yri log ŷ

r
i + (

1 − yri
)
log

(
1 − ŷri

))
. (7)

TEN loss
For the enhanced TEN task, we adopt the negative log-
likelihood over all training samples as the loss function of
CRF, which can be computed as follows:

LTEN = −
∑

s∈D
log

(
p

(
Ys|Hc

s ; θ
))

(8)

where D is the set of medical sentences of training data,
s denotes one sequential sentence in D, Ys is the label
sequence andHc

s is the integrated input representation.

Biased loss function
To strategically optimize the model parameters, we incor-
porate a static parameter γ , which can be called a bias

parameter, into the biased loss function for indirectly tun-
ing the optimization process. The biased loss function
is:

LBL = γ × LTEN + (1 − γ ) × LTER, (9)

where 0 < γ < 1 and LBL is the combined loss func-
tion. Furthermore, to obtain the best model, we should
find a balance between LTEN and LTER by fine tuning the
bias parameter γ . The detailed information is discussed in
“Bias parameter analysis” section.

Experiments
Data
To show the effectiveness of PASCAL, we evaluated it on a
real-world EHR dataset containing 12,700 clinical records
from Chinese third grade and class-A hospitals. As intro-
duced in Fig. 1, treatment regimens, from the clinical text
with a detailed description, might be recorded by different
doctors following their own guidelines, which can gener-
ate nonstandardized terms on the clinical records. Hence,
our objective is to map the treatment regimens onto the
controlled vocabulary from the latest GUIDELINES [9]
(the authoritative reference for breast cancer physicians in
China). For each patient, we extracted the clinical treat-
ment regimens from their electronic health records and
integrated them. As the length of nearly 99% clinical texts
in the datasets is less than 256, in this paper, we employ
clinical texts whose length is less than 256 in the follow-
ing experiments. To maintain relative independence, we
partition the records into training data and test data by a
ratio of 8 : 2 based on the patients. Therefore, it contains
209,677 sentences for training and 52,420 sentences for
testing. In the experiment, the training data are randomly
sampled at 10% for validation, and the remaining data are
used for training.

Settings and hyperparameters
To evaluate the effectiveness of framework PASCAL and
the influence of each key component, we design various
experiments on a real-world database. First, we choose
the three latest sequential models as baselines, including
Bi-LSTM [24], bidirectional OnLSTM [30] and TCN [22],
to obtain an accuracy comparison with GCNN. We also
conduct experiments for the single task to compare CRF
with softmax in a sequential multiclass classification task.
In addition, to further evaluate the performance of our
model, one state-of-the-art multitask learning model, we
call it feedback [17], is used as another baseline model in
the experiment. Finally, we dynamically adjust the values
of γ to realize the best model performance and to validate
the impact of the bias parameter on model performance
via experiments. Moreover, it is worth noting that most
experiments are conducted based on univariate analysis.
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To achieve the optimal normalization results, the hyper-
parameters are set as follows: the dimension of character
embedding is set as 200, the number of filters in the first
convolutional layer is set as 128 and in the following three
connected layers is set as 256, the size of convolutional
kernels in the CNN layer is set as 3, the number of con-
volutional layers is 4, the number of residual blocks is 3,
the dropout probability is set as 0.5, the learning rate is
set as 0.001 and the batch size is set as 256. We select
the hyperparameters in terms of cross-validation on train-
ing data and choose the average result of 10 experiments
as the result. In addition, the parameters are initialized
with Xavier initialization, and we take the LazyAdam [31]
optimizer for all neural networks. Finally, we employ the
Keras library [32] with the TensorFlow [33] backend, and
all models are run on a single NVIDIA Tesla P40.

Evaluation metrics
To fully evaluate the proposed approaches, we use three
prevalent evaluation metrics to provide a comparison
among different approaches. The metrics in [34] are pre-
cision, recall, and the F1-measure:

Precision = TP
TP + FP

(10)

Recall = TP
TP + FN

(11)

F1 − Measure = 2 × Precision × Recall
Precision + Recall

(12)

where FP and TP are the number of false positives and
true positives, respectively.

Results
Performance comparison
Table 2 illustrates the performance comparison between
baselines and our proposed approach concerning three
evaluation metrics on a real-world breast cancer dataset
for treatment entity normalization (TEN) in Chinese clin-
ical text. Softmax and CRF denote the softmax layer and
CRF layer for the single task of normalization, respec-
tively. Moreover, PASCAL (Softmax + CRF) denotes our
proposed cascade learning framework with a softmax
layer for the auxiliary task and a CRF layer for the primary
task.
As seen in Table 2, our proposed framework outper-

forms all the baselines on precision, recall and F1. Specifi-
cally, for our proposed framework with encoder TCN, we
observe that the F1 score exceeds approximately 13.9%
and 2.62%, the recall score exceeds approximately 11.2%
and 2.66%, and the precision score exceeds approximately
16.1% and 2.6% compared to that of softmax and CRF,
respectively. This means that our proposed pseudo cas-
cade learning framework can fully take advantage of the
auxiliary TER task to optimize the shared parameters and

propagate the implicit information to the primary TEN
task. Moreover, for PASCAL with encoder GCNN, the F1
score and recall score outperform others except for pre-
cision. This phenomenon shows that PASCAL is more
inclined to the correctness of normalized regimens but
neglects part of the ground truth regimens. However,
the recall and F1 metrics are more meaningful than the
precision metric in health informatics.
Concerning the critical encoder, as shown in Table 2,

GCNN performs better than other encoders on all eval-
uation metrics under the same framework. This partly
indicates that GCNN has a stronger ability to capture
long-range dependencies and mine the contextual rela-
tionships via the convolutional blocks and gating block. In
addition, comparing CRF with softmax, we observe that
the former with the CRF layer obtains higher performance
than the latter with the softmax layer. The reason is that
the neighboring TEN labels have strong dependencies that
can be captured by CRF.
Another meaningful finding is that the models with

GCNN perform much better than the model with Bi-
OnLSTM. Both models can utilize hierarchical informa-
tion to obtain better performance. However, the difference
is that the latter integrates the intrinsic tree structures into
RNN to obtain ordered neurons, while the former builds
the hierarchical structure via stacked CNN layers to cap-
ture local and long-range dependencies and introduces a
gating block to avoid gradient vanishing problems.
Furthermore, as shown in Fig. 4, the performance

of PASCAL obviously outperforms Feedback [17] with
respect to three evaluation metrics. We think there are
three main reasons for this. First, the explicit feedback
approach is designed for medical entity recognition and
normalization in English clinical text, while the PASCAL
model is developed for the TEN task in Chinese clinical
text. Second, the constituent characters in Chinese clin-
ical text are complicated and not only contain Chinese
characters but also mix English characters. The relations
between them are intricate and varied. The powerful
blocks of encoder GCNN enable PASCAL to better cap-
ture the contextual relationships and long-term depen-
dencies in clinical sentences. Third, the pseudo cascade
structure in PASCAL can further improve the model per-
formance by retaining useful information and mitigating
error propagation. In addition, the incorporation of CRF
can better utilize contextual information to normalize the
treatment entity. Therefore, based on the above analy-
sis, our model with GCNN and CRF is the most suitable
approach for the TEN task for breast cancer.

Computational efficiency
The aforementioned analyses mainly concentrate on the
aspect of normalization accuracy. However, it is well
known that computational efficiency is a critical factor in
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Table 2 Performance comparison on a real-world breast cancer dataset

Model Precision Recall F1

Softmax

Bi-LSTM 0.8171 ± 0.0143 0.8796 ± 0.0264 0.8472 ± 0.0221

Bi-OnLSTM 0.8316 ± 0.0205 0.8978 ± 0.0139 0.8635 ± 0.0152

TCN 0.7135 ± 0.0129 0.8218 ± 0.0231 0.7638 ± 0.0245

GCNN 0.8817 ± 0.0117 0.9016 ± 0.0210 0.8921 ± 0.0124

CRF

Bi-LSTM 0.8682 ± 0.0125 0.8905 ± 0.0238 0.8792 ± 0.0201

Bi-OnLSTM 0.8678 ± 0.0187 0.8952 ± 0.0145 0.8813 ± 0.0168

TCN 0.8486 ± 0.0089 0.9076 ± 0.0214 0.8771 ± 0.0179

GCNN 0.9443 ± 0.0126 0.9628 ± 0.0181 0.9535 ± 0.0094

PASCAL (Softmax + CRF)

Bi-LSTM 0.8931 ± 0.0153 0.9121 ± 0.0183 0.9025 ± 0.0168

Bi-OnLSTM 0.9078 ± 0.0149 0.9348 ± 0.0156 0.9211 ± 0.0175

TCN 0.8744 ± 0.0102 0.9342 ± 0.0192 0.9033 ± 0.0149

GCNN 0.9413 ± 0.0156 0.9770 ± 0.0147 0.9589 ± 0.0054

industrial applications. The main reason is that the com-
putational efficiency within finite computational ability is
much more important than a slight improvement in accu-
racy under some circumstances. For instance, in mobile
health monitoring, the responsive time of the device has a
great influence on the popularization rate. From the per-
spective of clinical doctors, what they need is saving their
time for decision-making and not wasting their time on it.
Thus, we must maintain a balance between efficiency and
accuracy when choosing the approaches.
As shown in Fig. 5, our presented PASCAL frame-

work with different encoders spends different training
times finishing one epoch. We find that Bi-OnLSTM
spends 193s on one training epoch, Bi-LSTM needs 117s,

while TCN and GCNN need 33s and 39s, respectively.
The reason lies in the different operating mechanisms
between recurrent networks and convolutional networks.
The recurrent network-based models, such as Bi-LSTM,
cannot be parallelized over the characters of a sentence
because the next outputs rely on the previous state. How-
ever, convolutional networks are very amenable to parallel
computing because the computation of all input char-
acters in a sentence can be performed simultaneously.
Moreover, the training efficiency of the TCN is higher
than that of the GCNNbecause it directly imposes tempo-
ral information on the convolutional process and does not
rely on the gating block, which slightly improves the effi-
ciency. However, the performance of GCNN on Precision,

Fig. 4 Accuracy comparison between PASCAL and Feedback [17]
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Fig. 5 Computational efficiency comparison of PASCAL with different encoders

Recall and F1 is 6.7%, 4.3% and 5.6% higher than TCN.
Therefore, after comprehensively considering the accu-
racy and efficiency, we choose GCNN as the encoder of
the pseudo cascade learning framework.

Bias parameter analysis
The main task of PASCAL is to normalize the treatment
entity into standard vocabulary with the help of an aux-
iliary TEN task. γ represents the proportion of TEN loss
in the training process, and (1 − γ ) denotes the propor-
tion of TER loss. Considering TEN as the primary task,
we manually adjust the proportion of γ in the biased loss
function LBL from 0.5 to 0.9 to explore the influence of γ

on the normalization performance. Table 3 shows that as
the value of γ increases, the normalization accuracy also
increases, which indicates that the optimization process
is gradually inclined to the orientation that is beneficial
to the TEN task. We observe that the improvement pro-
cess becomes unstable with the increase in the γ value.
For instance, the recall score when γ = 0.7 is lower
than γ = 0.6. We hypothesize that the main reason is
that the increase in γ means a decrease in 1 − γ , which
indirectly influences the optimization process related to
the TER auxiliary task. Moreover, the affected auxiliary
TER will further influence the optimization process of
shared parameters. Therefore, we should rationally select
the appropriate value of γ in practical applications.

Error analysis
Table 4 exhibits four general errors in different categories
obtained from the testing results. The displayed breast
cancer treatments are extracted from complicated clinical
text (Fig. 1b) and concatenated with the entity positions.
Specifically, the table lists the normalization results and
corresponding labels for each error case. For instance,
[’AC’, 17, 19], ’AC’ denotes the treatment regimen of breast

cancer, 17 denotes the starting index of the entity in a sen-
tence, and 19 denotes the ending index. Only when the
entity and the starting and ending indexes are all accu-
rate can the normalized results be recognized as correct.
In error case 1, there is an extra normalized entity [′ AC −
T ′, 11, 14], which is regarded as a correct normalization
result. This occurs because the entity label is missing in
the sentence, which can be an inevitable real case in the
dataset with artificial labels. However, the error case also
confirms the normalization effectiveness of our method.
Error case 2 belongs to the general normalizationmistakes
via our methods. However, for error case 3, it is diffi-
cult to normalize, especially when the treatment regimens
rarely exist in the training set. In that case, the algorithm
mapped the regimen onto the most similar normalization
entity. Likewise, in error case 4, the normalized indexes
deviate from the standard position, which brings about
another unnecessary entity ’EC-T’ that is an error due to
the high similarity to ’FEC-T’. All of the above-discussed
error cases will be further solved in our future work and
practical applications.

Conclusion and outlook
In this paper, we present a novel pseudo cascade learning
framework with a gated convolutional neural network and

Table 3 Performance comparison with regard to different bias
values

γ Precision Recall F1

0.5 0.9390 0.9769 0.9576

0.6 0.9347 0.9773 0.9555

0.7 0.9413 0.9770 0.9589

0.8 0.9402 0.9779 0.9587

0.9 0.9435 0.9780 0.9604
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Table 4 Error cases about the breast cancer treatment
normalization

Number Class The extracted breast cancer treatments

1
PASCAL [[’AC-T’, 11, 14], [’AC’, 17, 19], [’T’, 25, 28]]

Ground Truth [[’AC’, 17, 19], [’T’, 25, 28]]

2
PASCAL [[’NP’, 29, 31]]

Ground Truth [[’ET’, 26, 28],[’NP’, 29, 31]]

3
PASCAL [[’AC’, 22, 24],[’AC’, 90, 92]]

Ground Truth [[’AC-TH’, 22, 28], [’AC’, 90, 92]]

4
PASCAL [[’FEC-T’, 149, 152], [’EC-T’, 152, 153]]

Ground Truth [[’FEC-T’, 148, 153]]

Notes: The treatments are specifically extracted from the clinical context that
describes the treatment process of the patient. Treatments in red color indicates the
error cases on both the name and position of treatment

conditional random field, named PASCAL, for breast can-
cer entity normalization. Unlike traditional LSTM-based
models, our approaches improve the ability to capture
the local and long-range dependencies in a sentence by
a gated convolutional network (GCNN) and enhance the
training efficiency. We design a pseudo cascade structure
with an auxiliary TER task to provide auxiliary assistance
for optimizing the shared parameters and propagating the
useful information and with a biased loss function to fur-
ther optimize the TEN process. Moreover, we employ a
conditional random field (CRF) to obtain the optimized
normalization results by considering the previous labels
and contextual information. Finally, we conduct exten-
sive experiments on a real-world dataset of treatment
regimens for breast cancer, and the experimental results
validate the effectiveness and efficiency of our proposed
approaches. In general, the presented methods can be uti-
lized to solve the Chinese named entity normalization in
any other field.
We further improve the performance from the follow-

ing three aspects. First, we attempt to utilize the public
corpus to pretrain the character embedding for better
performance. Second, we integrate the domain knowl-
edge about breast cancer into the model to enable the
model to be more targeted. Third, we consider dynami-
cally adjusting the optimization process by replacing static
γ with a dynamic parameter that can be learned from
the neural networks. Finally, we leveraged the normal-
ized treatment and clinical laboratory measurements to
recommend breast cancer treatment for patients.
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