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Abstract

Background: Clinical Decision Support Systems (CDSSs) have recently attracted attention as a method for
minimizing medical errors. Existing CDSSs are limited in that they do not reflect actual data. To overcome this
limitation, we propose a CDSS based on deep learning.

Methods: We propose the Colorectal Cancer Chemotherapy Recommender (C3R), which is a deep learning-based
chemotherapy recommendation model. Our model improves on existing CDSSs in which data-based decision making is
not well supported. C3R is configured to study the clinical data collected at the Gachon Gil Medical Center and to
recommend appropriate chemotherapy based on the data. To validate the model, we compared the treatment
concordance rate with the National Comprehensive Cancer Network (NCCN) Guidelines, a representative set of cancer
treatment guidelines, and with the results of the Gachon Gil Medical Center’s Colorectal Cancer Treatment Protocol (GCCTP).

Results: For the C3R model, the treatment concordance rates with the NCCN guidelines were 70.5% for Top-1 Accuracy
and 84% for Top-2 Accuracy. The treatment concordance rates with the GCCTP were 57.9% for Top-1 Accuracy and 77.8%
for Top-2 Accuracy.

Conclusions: This model is significant, i.e., it is the first colon cancer treatment clinical decision support system in Korea that
reflects actual data. In the future, if sufficient data can be secured through cooperation among multiple organizations, more
reliable results can be obtained.

Keywords: Colorectal Cancer, Knowledge-based clinical decision support system (CDSS), Deep learning, Chemotherapy
recommendation

Background
Becoming a medical specialist generally requires 10–15
years of training, starting from entrance into university.
A medical specialist determines the condition of a pa-
tient and makes an appropriate diagnosis based on

medical and empirical knowledge acquired through years
of experience. Nevertheless, many patients die every year
from medical errors. According to a recent study per-
formed at Johns Hopkins University, over 250,000
people in the United States died because of medical er-
rors, which was the third leading cause of death after
heart disease and cancer that year [1]. Medical errors
also cost $20 billion annually in United States; minimiz-
ing medical errors is therefore crucial [2].
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Clinical Decision Support Systems (CDSSs) have
attracted attention as a method for minimizing medical er-
rors [3]. CDSSs can help clinicians make rational decisions
based on clinical information while diagnosing and treating
diseases [4]. They can be applied to support decisions
regarding prevention, diagnosis, treatment, prescription,
and prognosis, but they are typically used for diagnosis and
treatment. In terms of technology, CDSSs can be catego-
rized as knowledge-based and non-knowledge-based [5].
Knowledge-based CDSSs provide rule-based decision
making in accordance with a knowledge base of medical
data generated in clinical environments. In contrast, non-
knowledge-based CDSSs provide decision-making support
by learning patterns in clinical medical information through
artificial intelligence (AI) technologies, such as deep learn-
ing and machine learning. With the advancement of AI,
significant developments are expected in non-knowledge-
based CDSSs. However, the obstacle of securing data and
verifying its integrity remains. In Korea in particular, it is
difficult to use high-quality medical data freely under the
Personal Information Protection Act [6].
Watson for Oncology (WfO)—a leading non-knowledge-

based CDSS—was developed in 2012 by IBM through col-
laboration with the Memorial Sloan Kettering Cancer Cen-
ter (MSKCC), which is the largest private hospital in New
York [7]. WfO makes recommendations for diagnosing and
treating cancer using models trained by internalizing med-
ical big data, including 25,000 patient cases, 290 medical
journals, and 12 million pages of specialized data [8, 9]. In a
study published by the American Society of Clinical Oncol-
ogy (ASCO) in 2014, WfO was used to evaluate the treat-
ment of 200 leukemia patients with a concordance of 82.6%
[10]. Moreover, a 2014 study by MSKCC indicated high
treatment concordance rates for certain carcinomas, includ-
ing colorectal cancer (98%) and cervical cancer (100%) [10].
However, according to data released in 2017 by the Gachon
Gil Medical Center, which was the first hospital in Korea to
introduce WfO, the diagnosis concordance rate has de-
creased for most cancers [11]. The diagnosis concordance
rate for colorectal cancer was approximately 65.8%, a re-
duction of over 25% since WfO was first introduced [11].
This is because the NCCN guidelines, to which WfO refers
for diagnosis of colorectal cancer, suggest only comprehen-
sive treatment methods and do not consider individual pa-
tient characteristics. For this reason, Strickland [12] writes,
“It was argued that WfO is difficult to use because it some-
times provides dangerous recommendations.” Furthermore,
WfO is unable to link clinical medical data generated at the
clinical site, e.g., electronic medical records (EMR). It has
also been criticized in terms of its usability [13].
In many clinical fields, research is being conducted to

establish decision support systems like WfO. In terms of
knowledge-based CDSSs, Rocha et al. [14] proposed a
shared-decision making-based CDSS for the treatment

of prostate cancer. This model compares the results of
WfO with the results of a shared-decision making process,
which involves informed value-based selection with pa-
tients in the absence of a best treatment option. Perfect
matches were found in 58%, partial matches in 15%, and
inconsistencies in 31%. The main reason for inconsisten-
cies was found to be that patients wanted treatment be-
yond surveillance. Krens et al. [15] established a CS rule-
based CDSS for the treatment of kidney failure in cancer
patients. Clinical rules were defined for a total of 18 cyto-
toxic drugs, and only 112 of the 2681 prescriptions gener-
ated warnings. A similar study presented a CDSS for the
differential diagnosis of pulmonary fibrosis [16].
In the field of non-knowledge-based CDSSs, Pyo et al.

[17] built a model to predict an anti-PD-1 cancer im-
munotherapy response using clinical and blood-based data
from lung cancer patients. Supervised machine learning
models such as LASSO, Ridge Regression, Elastic Net,
Support Vector Machine (SVM), Artifical Neural Network
(ANN), and Random Forest (RF) were used. Among them,
the ridge regression model (area under the ROC curve
(AUC): 0.78) showed excellent performance in predicting
the anti-PD-1 response. Kenny et al. [18] proposed a
CDSS based on computed tomography (CT) to evaluate
the response to muscle-invasive bladder cancer treatment.
To confirm the degree of response before and after
chemotherapy, they constructed CDSS-T, a deep learning
model based on a convolutional neural network, using CT
images and radioactive features. The mean AUC value for
CDSS-T was 0.80, compared to an AUC value of 0.74 for
doctors who did not use CDSS-T. Although various stud-
ies have been conducted to establish CDSSs, most involve
rule-based CDSSs that do not reflect real-world data or
CDSSs that simply predict the onset. According to the
2016 National Cancer Registration Statistics released by
the Central Registration Center in 2018, colorectal cancer
is the second most common type of cancer (after gastric
cancer) and is the fourth most common type of cancer in
the United States [19, 20]. Moreover, because the recur-
rence rate (i.e., recurrence of the primary cancer or a new
cancer) after the treatment of colorectal cancer is higher
than for other carcinomas, it is important to select an ap-
propriate chemotherapy treatment recommendation.
Therefore, to resolve the limitation that existing non-

knowledge-based CDSSs do not reflect actual data, we
developed an EMR data-based deep learning model
called the Colorectal Cancer Chemotherapy Recom-
mender (C3R). Oversampling was used to solve the
problem of overfitting caused by the class imbalance,
which led to a significant improvement in performance.
In addition, the Deep-Surv model was used to support
more accurate decision making by checking which fac-
tors influenced the chemotherapy recommendation in
the deep learning process.
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The structure of the manuscript is as follows. In
the Background section, we briefly introduce clinical
decision support systems. In the Methods section, we
present our contributions, including our implementa-
tion of data extraction and data preprocessing and
our proposed treatment recommendation model C3R.
In the Results section, we describe the experimental
design and results. The Conclusion and Discussion
sections conclude the manuscript.

Methods
Dataset
In this study, we used the EMR data of the Gachon
Gil Medical Center, which launched WfO of IBM in
Korea for the first time in 2016. The Gachon Gil
Medical Center obtained reliable data through WfO
and multi-disciplinary medical treatments involving
face-to-face interaction between patients and four or
more cancer treatment specialists. The data were col-
lected from patients who had undergone colorectal
cancer surgery between 2004 and 2012. The dataset
includes information such as demographics and dis-
ease, cancer, tumor, treatment, survival, and genetic
characteristics. This standard information is based on
the colorectal cancer Common Data Model (CDM)
definition employed by five domestic hospitals, includ-
ing the Gachon Gil Medical Center.
The EMR data of the Gachon Gil Medical Center are

divided into scanned, XML, and database EMRs accord-
ing to the storage method. In scanned and XML EMRs,
it is possible that the data were deleted or entered incor-
rectly when a medical record administrator checked the
record. Therefore, to verify the reliability and integrity of
the extracted dataset, several colon cancer specialists
and medical record administrators collaborated to re-
view the charts.
The chart review involved a detailed three-step

process over a six-month period. In the first step, the
extracted data were checked to ensure that they were
properly mapped with the code described in the colo-
rectal cancer CDM definition document and were
then extracted from the correct location through the
normal method. In the second step, to ensure the
reliability of the extracted data, an operation was per-
formed to identify and remove incorrect data, such as
redundancies and incorrect inputs. This chart review
process was repeated at monthly intervals under the
supervision of a colorectal cancer specialist. In the
final step, to reduce unnecessary biases in the training
of the deep learning model, the colorectal cancer spe-
cialists selected first-priority variables that are highly
related to survival. Table 1 presents six data categor-
ies and the variables in each category.

Data Preprocessing and oversampling
Data Preprocessing
Data preprocessing is often required to obtain correct
analysis results. If data preprocessing is not performed
correctly, the relationship between the variables may be
distorted [21]. Data preprocessing is therefore important
for generating a solid model. In this study, we focused
on pre-processing missing values and on categorical and
continuous variables prior to constructing the deep
learning models.
First, if the missing-value ratio of a variable was

determined to be > 90%, the variable was excluded
because sufficient data samples for training could not
be obtained. All instances of missing values in the
prediction target class Post-OP Chemo Regimen were
excluded. Continuous variables such as age, ASA, and
CEA have different ranges, and if training is per-
formed without adjusting the ranges, overfitting may
occur, obstructing normal learning [22]. Therefore,
the range of each variable was scaled to − 1 to 1 by
applying the min-max normalization scaling method.
In the case of the categorical variables, the values
were mostly character data rather than numeric data,
and thus could not be automatically recognized or
computed by a computer. One-hot encoding was
therefore employed to vectorize each variable and
represent it as 0 s and 1 s. Figure 1 illustrates the data
preprocessing process, which includes a data oversam-
pling process.

Table 1 Dataset description

Input Variables

Demographics Age, Sex, ASA, BMI, Smoking History

Disease
Characteristics

DM History, Pulmonary Disease, Liver Disease,
Heart Disease, Kidney Disease

Cancer
Characteristics

Prior Cancer Diagnosis, Initial CEA, Perforation,
Obstruction, Emergency, Lymphovascular Invasion,
Perineural Invasion, Distal Resection Margin, Radial
Margin, Radiotherapy, Harvested Lymph Node,
Positive Lymph Node, Early Complication

Tumor
Characteristics

Hereditary Colorectal Tumor, Tumor Location
(Pathology), Histologic Type, TNM Stage
(Pathology)

Genetic
Characteristics

K-ras, N-ras, BRAF

Treatment
Characteristics

Postoperative Chemotherapy

Oncologic
Outcomes

Overall Survival, Recurrence

Target Variables

Chemotherapy Postoperative Chemotherapy Regimen

(5-FU/LV, XELODA, FOLFOX, FOLFIRI, Surveillance)
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Data oversampling
In most real world data, the classes of the target vari-
ables have an imbalanced distribution [23, 24]. Data that
have such a distribution are called imbalanced data.
Medical data generated in a clinical environment are
particularly severely imbalanced. Normally, we define
a class with a relatively small proportion of the total
instances as a minor class and a class with a large
proportion of instances as a major class [25]. If model
training is performed using imbalanced data, it is
likely that the minor class will not be properly recog-
nized, and all test data will be classified as belonging
to the major class [26]. Various methods, such as
undersampling and oversampling, have been proposed
to solve this problem. Undersampling involves adjust-
ing the class proportions by removing some data from
the major class, whereas oversampling involves repro-
portioning the classes by multiplying the minor class
data. In general, when there is sufficient data,

undersampling is used. However, undersampling
would hinder the construction of a normal learning
model in this study because the dataset is not suffi-
ciently described. We therefore attempted to resolve
the data imbalance by oversampling using the boot-
strap resampling algorithm [27], which allows for
effective inference with a small amount of data. The
oversampled data is only added to the minority class
in the training set to avoid affecting the test perform-
ance. Figure 2 shows a bootstrap-based oversampling
process.

Structure of the chemotherapy recommender
To predict and recommend treatment methods, we
developed a deep feed-forward neural network, called
the Colorectal Cancer Chemotherapy Recommender
(C3R). It is the most basic implementation of a deep
neural network (DNN). The model was designed as a
three-layer perceptron structure in the order of [Input

Fig. 1 Data preprocessing and data oversampling

Fig. 2 Process of the bootstrap-based oversampling algorithm (blue nodes represent the majority class, and red nodes represent the minority
class of the target variable. Oversampling is limited to the minority class, i.e., the oversampled data is only added to the minority class)
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Layer] – [Hidden Layer] – [Output Layer]. The de-
tailed nodes composing each layer were designed as
([Input: 54] – [Hidden: 64] – [Hidden: 128] – [Hid-
den: 256] – [Hidden: 64] – [Output: 5]). We used a
grid-search algorithm to tune the hyperparameters.
The hyperparameter types and grid-search ranges
were as follows: layers ∈ {1, 2, 3, 4}, batch size ∈ {32,
64, 128, 256}, learning rate ∈ {0.1, 0.01, 0.001,
0.0001}, and optimization algorithm ∈ {Adam [28],
Adadelta [29], RMSProp [30]}. The hyperparameters
determined by the grid-search algorithm were [Batch
Size 64, Learning Rate 0.001, and Optimization Algo-
rithm: Adam Optimizer]. A dropout layer was added
in the middle of each hidden layer to prevent overfit-
ting. ReLU [31] was used as the activation function
for each layer except the output layer for which Soft-
max [32] was used as the activation function. The
Softmax activation function calculates the input data
and returns a probability value normalized between 0
and 1; it can be expressed as follows:

σ zð Þi ¼
ezi

PK
j¼1e

βzi
for i ¼ 1;…;K and z ¼ z1;…; zKð Þ∈ℝK

ð1Þ

The returned probability value is defined as the
Chemotherapy Recommendation Index, and according
to this value, a priority can be determined for
suggesting an appropriate treatment method to the

patient. Figure 3 illustrates the detailed structure of
C3R.

Model verification and evaluation
To evaluate the performance of the proposed C3R
model, we used a confusion matrix. We then com-
pared the diagnosis concordance rate between the
C3R model and the Gachon Colorectal Cancer Treat-
ment Protocol (GCCTP) and NCCN guidelines to val-
idate C3R. Top-1 Accuracy and Top-2 Accuracy were
used as comparative indicators because the treatment
methods proposed in each guideline were broken
down by priority. The recommendations of the C3R
model are considered to have Top-1 Accuracy if they
are included in the preferred treatment method pro-
posed by each guideline, and they are considered to
have Top-2 Accuracy if they are included in the next
suggested treatment. Figure 4 shows the model verifi-
cation process including the model performance
evaluation.

Gachon colorectal Cancer treatment protocol
For validation, we first used the GCCTP, which colorec-
tal cancer specialists use to determine treatment options
for patients at the Gachon Gil Medical Center. The
GCCTP is a rule-based treatment recommendation sys-
tem based on empirical knowledge from numerous colo-
rectal cancer specialists. It allows a colorectal cancer
specialist to diagnose a patient’s condition and

Fig. 3 Structure of the deep learning model for chemotherapy recommendation
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determine treatment options according to information
such as the patient’s demographics, TNM stage, and risk
factors. Figure 5 shows an example of a colorectal cancer
treatment protocol based on the GCCTP for a case with-
out metastasis.

NCCN guidelines
The NCCN guidelines, which were published by ex-
perts from 28 cancer centers in the United States, re-
flect the opinions of experts and serve as a guideline
for international cancer treatment standards. The
guidelines cover the diagnosis, treatment decisions,
and treatments for 97% of the cancers in the United
States. They are updated annually with new medical
grounds to provide the optimal clinical guidelines for
treating cancer patients. The NCCN guidelines are

divided into rectal and colon cancer guidelines. Ver-
sion 2 of 2019 was used for verification of colon can-
cer treatment recommendations and Version 2 of
2018 for verification of rectal cancer treatment rec-
ommendations [33, 34].

Performance evaluation metrics
Various comparative indicators were used to evaluate
the performance of the C3R model. Specifically, we
used a confusion matrix to evaluate the model per-
formance. A confusion matrix, which is typically used
to evaluate the performance of an algorithm [35],
compares the actual results with the model prediction
results in a table that includes four categories: true
positive (TP), true negative (TN), false positive (FP),
and false negative (FN). TP refers to a true prediction

Fig. 4 Process of model evaluation and verification

Fig. 5 Example of a CRC treatment protocol: Colon Cancer M0 Treatment Protocol (the protocol is an algorithm that is used when administering
chemotherapy to patients with colorectal cancer at the Gachon Gil Medical Center. The protocol recommendations are generally divided for
rectal cancer and colon cancer and for M0 and M1 cases without metastasis)
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when the actual result was true and TN to a false
prediction when the actual result was false. FP refers
to a false prediction when the actual result was true
and FN to a negative prediction when the actual re-
sult was true. These metrics can be used to calculate
evaluation indicators, such as the accuracy, sensitivity,
specificity, precision, recall, F1-Score, and area under
the ROC curve (AUC) [36]. In this study, we used
the precision, recall, F1-score, and AUC, which can
be used regardless of class imbalances.

Results
Results of data extraction and data Preprocessing
The initial EMR dataset consisted of 143 variables
and 1511 instances. After the chart review and data
preprocessing, the dataset consisted of 59 variables
and 1169 instances. Of the 59 variables, 5 were se-
lected as target classes and were ultimately predicted
and recommended: 5-FU/LV, XELODA, FOLFOX,
FOLFIRI, and Surveillance. We divided the final data-
set into a training set for learning and a test set for
model verification (at a ratio of 8:2), to construct a
deep learning model. Table 2 provides the detailed
process of chart review and data preprocessing. De-
tails of the continuous and categorical variables can
be found in the S1 and S2 Tables, respectively.

Results of data oversampling
Through the bootstrap resampling process, we created
sufficient minor class data (XELODA and FOLFIRI) for
training. The minor class data was oversampled from
the existing data by a factor of approximately 5, and the
major class was not oversampled. The newly created
data were only added to the training set to avoid affect-
ing the test results. The numbers of instances in each
target class after the oversampling are presented in
Table 3.
To check whether the distribution of the generated

data resembled that of the existing data, the mean

and standard deviation of Age and OS were calcu-
lated for each anticancer treatment method according
to gender. A t-test was conducted to check whether
there was a difference between the two groups for
XELODA and FOLFIRI, for which data oversampling
was performed (Table 3). The mean age of the
XELODA male group was 68.00 years, and the stand-
ard deviation was 9.90 years, indicating no significant
difference (95% confidence interval: 63.90–72.10
years). The mean OS of the FOFIRI female group was
35.04, and the standard deviation was 33.64. As for
these two examples, none of the indicators of
XELODA and FOLFIRI exhibited a significant differ-
ence in mean after oversampling (p > 0.05). Details of
the t-test can be found in S3 Table. This result indi-
cates that the data generated using the bootstrap re-
sampling technique had a similar distribution to the
existing data. The newly generated data were thus
added to the existing minor class to enable effective
learning of the minor class.

Performance of C3R
As mentioned above, we used the precision, recall,
F1-score, and AUC indices to evaluate the perform-
ance of the proposed C3R anticancer treatment rec-
ommendation model. The AUC values for all classes
were > 0.95, indicating that the developed model gen-
erally had good performance. For surveillance, all pa-
tient cases were predicted correctly, i.e., with 100%
accuracy. For the oversampled variables, i.e., XELODA
and FOLFIRI, the precision values were 0.80 and 0.89,
respectively. The overall performance of the model on
all classes was generally good, with a precision of
0.92, recall of 0.98, F1-score of 0.95, and AUC of 0.98
(Table 4, Fig. 6).
To evaluate the performance of C3R objectively, we

also compared its performance with that of other ma-
chine learning algorithms such as SVM, Decision
Tree, K-NN, and RF. The results indicate that the

Table 2 Dataset changes due to chart review and data preprocessing

Process Variables (+Target Classes) Patients (N)

First CRC Dataset 142 (+ 1) 1511

Chart Review 1) Check extraction method and location 142 (+ 1) 1508

2) Check for inappropriate data 142 (+ 1) 1496

3) Select priority variables (First Processed CRC Dataset) 40 (+ 1) 1496

Data Preprocessing 1) Drop redundant variables 37 (+ 1) 1496

2) Drop variables including 90% ↑ missing values 32 (+ 1) 1496

3) Drop instances containing missing values 32 (+ 1) 1169

4) One-hot encoding (Final CRC Dataset) 54 (+ 5) 1169

Data Split 1) Data split (training/testing) 54 (+ 5) 935 / 234
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proposed model performed best followed by the Deci-
sion Tree. This may have occurred because the Deci-
sion Tree is effective algorithm for classifying binary
data. Table 5 compares the performance of the
algorithms.

Model verification
To verify C3R, we randomly extracted 200 data in-
stances from a test set that was not involved in
model training. Of these instances 24 were excluded
from the comparison evaluation because the GCCTP
treatment protocol did not reflect the variables used
in the C3R model. Table 6 presents a comparison of
the chemotherapy treatment methods recommended
by C3R and those recommended by GCCTP and
NCCN. XELODA and FOLFIRI, for which there were
insufficient test samples, exhibited fluctuations in
Top-1 and Top-2 Accuracy.
The GCCTP treatment concordance rate was 57.95%

for Top-1 Accuracy and 77.84% for Top-2 Accuracy. For
cases of 5-FU/LV and FOLFIRI, the Top-1 Accuracy was
23.63 and 0%, respectively. For XELODA, FOLFOX, and
Surveillance, however, the Top-1 Accuracy ranged from
70 to 80%. The Top-2 Accuracy for FOLFOX was
91.89%, which was the highest treatment concordance
rate among the chemotherapy methods.
The treatment concordance rate with the NCCN

guidelines was higher than for the GCCTP, with a
Top-1 Accuracy of 70.50% and a Top-2 Accuracy of
84%. Except for 5-FU/LV and XELODA, a treatment
concordance rate of > 80% was achieved for all
chemotherapy treatment methods. Although FOLFIRI
was limited to five samples, both the Top-1 and Top-

2 Accuracy achieved a 100% treatment concordance
rate.

Model explanation
To explain why the C3R model recommends specific
treatment options, we use the SHapley Additive
exPlanations (SHAP) model. The SHAP model [37] is
a game theoretic approach to explaining the output of
a machine learning model. It connects the optimal
credit allocation with local explanations using the
classic Shapley values from game theory and their
related extensions.
Figure 7 illustrates the contribution of different

variables to the model output. In general, pathologic
variables such as the TNM Stage and tumor location
were found to have a significant effect on the model. In
addition, demographics such as age, smoking history,
and histologic type were also found to influence the
results.

Discussion
In this study, we propose a DNN-based deep learning
model called C3R to provide chemotherapy recom-
mendations for colorectal cancer patients after sur-
gery. One limitation in this study is that the model
was built using specific data from a single institution.
It can be assumed that this data is generalized to
match the data collected at certain hospitals. To
minimize this generalization problem and to ensure
the scalability of the model developed in this study,
we extracted data based on the Colorectal Cancer
Data Dictionary that was built through collaboration
with various domestic hospitals. The Colorectal Can-
cer Data Dictionary is a Common Data Model
(CDM) for colorectal cancer and was created to unify
data variables and formats occurring across hospitals.
It is currently constructed using the data from a sin-
gle hospital, but in the future, it can accommodate
data collected from various hospitals. To expand the
model proposed in this study, a test will be
conducted for patients with colorectal cancer at the
Gachon Gil Medical Center.
The treatment concordance rates of the C3R model

with the NCCN guidelines were 70.5% for Top-1 Ac-
curacy and 84% for Top-2 Accuracy. This is approxi-
mately 10% greater than the rates for the GCCTP;
the special medical insurance system of Korea makes

Table 3 Results of oversampling of the minor classes

Method Total 5-FU/LV XELODA FOLFOX FOLFIRI Surveillance

Original 1169 398 42 323 35 371

After Oversampling 1454 398 206 323 156 371

Table 4 Performance of the proposed model for each
chemotherapy method

Class Precision Recall F1-score AUC

5-FU/LV 0.99 0.96 0.97 0.97

XELODA 0.80 1.00 0.89 0.99

FOLFOX 0.95 0.94 0.95 0.96

FOLFIRI 0.89 1.00 0.94 0.99

Surveillance 1.00 1.00 1.00 1.00

Total 0.92 0.98 0.95 0.98
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it difficult to use the chemotherapy methods recom-
mended by the NCCN. In Korea, chemotherapy is
proposed to patients on the basis of guidelines pro-
vided by the Health Insurance Review and Assess-
ment Service (HIRA). If a patient selects a treatment
that does not satisfy the guidelines of the HIRA, they
are required to pay a substantial fee because they will
not be eligible for health insurance. Most patients
therefore select chemotherapy methods that satisfy
the HIRA guidelines. This may have reduced the
diagnosis concordance rate in the present study be-
cause the treatment methods proposed by the C3R
model and the NCCN guidelines may differ.
Katzman JL et al. [38] proposed DeepSurv, which

was briefly introduced in the Model Explanation sec-
tion for the identification of variables affecting the
model. DeepSurv is a deep learning-based recommen-
dation model based on patient survival data. The
DeepSurv model requires accurate tracking to deter-
mine a patient’s prognosis after chemotherapy. To de-
termine the exact prognosis for a patient, continuous
follow-up, typically over 3 to 5 years, is required.
Realistically, it is not easy to follow a patient for such
a long duration. Another limitation is that if a patient

dies within the follow-up period, it can be difficult to
determine the exact cause of death because several
factors may be involved. Our proposed method differs
in that the developed model recommends chemother-
apy using objective data that can be extracted from
patients.
To expand the model proposed in this study, tests

will be conducted on colon cancer patients visiting
the Gachon Gil Medical Center. During the test, we
will analyze the match rate of the chemotherapy rec-
ommendations with clinicians to confirm that we are
properly supporting decision making. The model per-
formance can then be further enhanced through a
series of processes that will expand the model to
multiple connected hospitals to collect refined data.
With more research at scale, CR3 can be used by cli-
nicians to select personalized treatment options.

Fig. 6 ROC curve and confusion matrix for evaluation of the proposed model

Table 5 Comparison of the performance of the proposed
model and various machine learning algorithms

Method Precision Recall F1-score AUC

Proposed 0.92 0.98 0.95 0.98

SVM 0.80 0.90 0.89 0.85

Decision Tree 0.90 0.94 0.93 0.93

K-NN 0.82 0.83 0.80 0.82

Random Forest 0.91 0.93 0.92 0.92

Table 6 Comparison of the Top-1 and Top-2 Accuracy between
the proposed model and the GCCTP and NCCN guidelines

Group N Top-1 Accuracy (%) Top-2 Accuracy (%)

GCCTP 5-FU/LV 55 23.63 78.18

XELODA 5 80.00 80.00

FOLFOX 37 83.78 91.89

FOLFIRI 4 0 75.00

Surveillance 76 71.05 71.05

Total 176 57.95 77.84

NCCN 5-FU/LV 59 47.45 83.05

XELODA 6 50.00 100.00

FOLFOX 50 92.00 94.00

FOLFIRI 5 100.00 100.00

Surveillance 80 80.00 80.00

Total 200 70.50 84.00
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Conclusions
The C3R model is a CDSS based on data generated
at the Gachon Gil Medical Center. It learns past clin-
ical cases to recommend personalized treatment
methods. The AUC of the C3R model was approxi-
mately 0.98, indicating excellent performance on the
EMR data, but the treatment concordance rates with
the GCCTP and NCCN guidelines were not as high.
The GCCTP—a treatment protocol established
through the cooperation of several colorectal cancer
specialists—is limited in that not all the data gener-
ated in the clinical environment are reflected in the
rule-based system. While over 40 variables are used
in the C3R model, approximately 20 variables were
used to construct the GCCTP.
The CR3 reflects actual data, in contrast to existing

non-knowledge-based CDSSs. Its development is signifi-
cant, i.e., it is the first colon cancer treatment method
decision support system in Korea that reflects actual
data. From a clinical viewpoint, if a CDSS built with a
vast amount of data outputs results that differ from
existing treatment protocols and guidelines, the results
may be accepted as a new opinion for the treatment
protocol rather than treated as an algorithmic error.
Moreover, an interpretable CDSS can be built by provid-
ing deep learning models and a deep learning interpret-
ation model.
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1186/s12911-020-01265-0.
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on T-tests.
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