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Abstract 

Background:  Pneumothorax (PTX) may cause a life-threatening medical emergency with cardio-respiratory collapse 
that requires immediate intervention and rapid treatment. The screening and diagnosis of pneumothorax usually rely 
on chest radiographs. However, the pneumothoraces in chest X-rays may be very subtle with highly variable in shape 
and overlapped with the ribs or clavicles, which are often difficult to identify. Our objective was to create a large chest 
X-ray dataset for pneumothorax with pixel-level annotation and to train an automatic segmentation and diagnosis 
framework to assist radiologists to identify pneumothorax accurately and timely.

Methods:  In this study, an end-to-end deep learning framework is proposed for the segmentation and diagnosis of 
pneumothorax on chest X-rays, which incorporates a fully convolutional DenseNet (FC-DenseNet) with multi-scale 
module and spatial and channel squeezes and excitation (scSE) modules. To further improve the precision of bound‑
ary segmentation, we propose a spatial weighted cross-entropy loss function to penalize the target, background and 
contour pixels with different weights.

Results:  This retrospective study are conducted on a total of eligible 11,051 front-view chest X-ray images (5566 
cases of PTX and 5485 cases of Non-PTX). The experimental results show that the proposed algorithm outperforms 
the five state-of-the-art segmentation algorithms in terms of mean pixel-wise accuracy (MPA) with 0.93± 0.13 and 
dice similarity coefficient (DSC) with 0.92± 0.14 , and achieves competitive performance on diagnostic accuracy with 
93.45% and F1-score with 92.97%.
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Background
Pneumothorax (PTX) is an acute pulmonary disease with 
respiratory disorder caused by the abnormal accumula-
tion of air in the pleural space between the chest wall and 
the lung [1, 2]. According to the previous study in United 
States, PTX can occur in a variety of clinical settings and 
in individuals of any age, with a 35% recurrence rate in 
men [3]. PTX can cause pleuritic chest discomfort and 
dyspnea, and in severe cases may precipitate life-threat-
ening medical emergency with cardio-respiratory col-
lapse, requiring immediate intervention and subsequent 
prevention [4].

The screening and diagnosis of pneumothorax usually 
rely on chest radiographs that are formed by the differ-
ences in the absorption of X-ray ionizing radiation of 
different tissues in the chest [5]. Since chest radiographs 
project all three-dimensional anatomical clues of the 
chest onto a two-dimensional plane, the pneumothora-
ces in chest X-rays may be very subtle and overlapped 
with the ribs or clavicles. The identification of pneumo-
thorax in chest X-ray is difficult and largely depends on 
the experience of radiologists. The failure of radiologists 
to detect PTX in early examination is one of the leading 
causes of PTX death [2]. Therefore, it is highly demanded 
to develop an automatic algorithm to reduce missed 
diagnosis and to help radiologists identify PTX accu-
rately and timely.

Conventional PTX detection methods mainly consider 
the local and global texture cues [6], features from phase 
stretch transform (PST) [2], and local binary pattern 
(LBP) and then employ support vector machine (SVM) to 
classify the presence and absence of pneumothorax [7]. 
These conventional algorithms, which count on hand-
crafted features and require prior knowledge for the fea-
ture engineering that can be well modeled through shape 
and appearance features and consistent data distribution, 
are suited to the detection of regular organs and lesions. 
However, the modeling capability of the conventional 
method is very limited when the shape and size of PTX 
vary greatly and the characteristics are not obvious.

Recently, deep learning-based technologies, especially 
the convolutional neural networks (CNNs), have shown 
great potential in medical image analysis [8, 9]. Several 
deep CNNs algorithms have been proposed for the iden-
tification of PTX with the image-level annotation. Wang 

et al. [10] released a large-scale chest X-ray dataset with 
image-level annotation, and proposed a deep CNN for 
the classification of 14 abnormalities (including PTX) on 
chest X-ray. This study is a milestone of PTX detection 
in the era of deep learning. Later, the studies of [11–14] 
proposed more accurate classification networks for the 
14 kinds of chest diseases, and the studies of [4, 15] pro-
posed methods that only detect PTX. Despite these deep 
learning-based methods have demonstrated effectiveness 
in the PTX identification with image-level annotation, 
the utilization of image-level annotation makes the local-
ization of pneumothorax on chest X-ray insufficiently 
precise. Since the segmentation of PTX region can help 
determine the large PTX for the automatic triaging 
scheme [16], accurate segmentation of PTX with pixel-
level annotation is very crucial to the accurate localiza-
tion of pneumothorax. However, due to the difficulty in 
obtaining pixel-level annotations of PTX, there are few 
studies on PTX segmentation.

Lesion segmentation in medical images is the most fun-
damental tool for the support of lesion analysis and treat-
ment planning. Automatic and accurate segmentation 
tool can better help radiologists in the quantitative image 
analysis and support precise diagnosis. In this study, we 
create a large chest X-ray dataset for pneumothorax with 
pixel-level annotation by radiologists and explore an 
automatic segmentation algorithm for PTX identification 
using fully convolutional networks (FCNs) [17]. FCNs 
were introduced in the literature as a natural extension 
of CNNs to formulate semantic segmentation as pixel 
classification problem. FCNs and its further extensions 
like U-Net [18] have achieved remarkable performance 
for several tasks like the segmentation of lungs, clavi-
cles, heart in chest radiographs [19], brain tumors [20], 
estimation of cardiothoracic ratio [21], etc. However, the 
PTX areas in chest X-rays may be very subtle and varied 
in shape, overlapping with the ribs or clavicle, and there-
fore the PTX segmentation task suffers from pixel imbal-
ance and multi-scale problems.

In this study, we propose a fully convolutional multi-
scale scSE-DenseNet framework for PTX segmentation 
and diagnosis with the pixel-level annotation on chest 
X-ray. The framework consists of three modules: (1) a 
fully convolutional DenseNet (FC-DenseNet), which is 
parameter efficient and served as the backbone of the 

Conclusion:  This framework provides substantial improvements for the automatic segmentation and diagnosis of 
pneumothorax and is expected to become a clinical application tool to help radiologists to identify pneumothorax on 
chest X-rays.

Keywords:  Chest X-ray, Pneumothorax segmentation and diagnosis, fully convolutional DenseNet, Spatial and 
channel squeezes and excitation, Spatial weighted cross-entropy loss
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framework; (2) a multi-scale module that captures the 
variability of viewpoint-related objects and learns the 
relationships across image structures at multiple scales; 
(3) a scSE module, which is incorporated into each con-
volution layer in the dense block of FC-DenseNet and 
can adaptively recalibrate feature maps to elucidate use-
ful features while suppressing non-useful features with-
out adding much parameters. To tackle the imbalance 
problem of pixels [22], we also introduce a spatially 
weighted cross-entropy loss (SW-CEL) function to penal-
ize the target areas, background and boundary pixels 
using different weights. The proposed method can not 
only reduce the impact of class imbalance, but also bet-
ter describe the boundary areas to segment and diagnose 
pneumothorax accurately. This study extends our prelim-
inary work [23] by redesigning the automatic segmenta-
tion and diagnosis framework for PTX, adding extensive 
experiments to evaluate the automatic segmentation and 
diagnosis of PTX, and discussing the effects of different 
growth rates and loss functions on PTX segmentation.

Methods
In this section, an end-to-end deep learning framework is 
proposed for PTX segmentation by using FC-DenseNet 
as a backbone with the embedding of multi-scale mod-
ule and scSE module, and a simple classifier is added to 
set the threshold to diagnose PTX by classifying the pre-
dicted PTX segmentation maps, as shown in Fig. 1.

Fully convolutional DenseNet for PTX segmentation
A deep learning-based typical segmentation architecture 
is composed of two parts: a down-sampling path (con-
traction) and an up-sampling path (expansion), where 
the down-sampling path is responsible for feature learn-
ing and the up-sampling path aims to restore the spatial 
information and image resolution. Alternatively, skip 
connections can be used to help the up-sampling path 
to recover spatial detail information from the down-
sampling path by reusing feature maps. In this study, 
we employ FC-DenseNet [24, 25] as the network back-
bone for its advantages of parameters reduction, com-
putational efficiency and better withstand of over-fitting 
problem.

The down-sampling path of FC-densenet consists mul-
tiple blocks, each containing a dense block followed by a 
transition-down block. For each dense block, it iteratively 
concatenates all feature maps in a feedforward paradigm. 
A dense block contains multiple layers, each consisting 
of a batch normalization, a non-linearity activation func-
tion, a convolution operation, and a dropout connec-
tion (see Fig. 1c). Each layer in the dense block, l, takes 
all feature maps of the preceding layers that match the 
spatial resolution as input, outputs k feature maps and 

passes them to the subsequent layers (see Fig. 1b), where 
k is known as growth rate. Hence, the number of feature 
maps in the dense block grows linearly with the depth of 
the down-sampling path of FC-DenseNet and the output 
of the lth layer can be defined as:

where xl denotes the feature maps at the lth layer, the 
notation ⊕ denotes the channel-wised concatenation for 
the feature maps from the layer l − 1 to the layer 0. H is 
a composition of batch normalization, exponential linear 
unit and convolutional layer with dropout rate of 0.2 (see 
Fig. 1c), and Hl represents a composite function of the lth 
layer.

In order to reduce the spatial dimensionality of the fea-
ture maps, a transition down block following the dense 
block is introduced (see Fig.  1d). The transition down 
block consists of batch normalization, exponential lin-
ear unit and 1× 1 convolution for depth preserving with 
dropout rate of 0.2, and followed by a 2× 2 max pooling 
operation. In particular, the end block of the down-sam-
pling path is called bottleneck and is connected to the 
up-sampling path.

Through the up-sampling path, the spatial resolution 
of the input can be recovered by transition up blocks, 
dense blocks, and skip connections from the correspond-
ing blocks of the down-sampling path. The transition 
up block is a transposed 3× 3 convolution (see Fig. 1e), 
which implements the up-sampling of the previous fea-
ture maps. Then, the up-sampled feature maps are chan-
nel-wisely concatenated with the feature maps from the 
corresponding skip connections in the down-sampling 
path as the input of the dense block in the up-sampling 
path. At the end of up-sampling path, the feature maps of 
the output are convolved with a 1× 1 convolution layer, 
and followed by a softmax layer and average max-pooling 
operation to generate the final segmentation map. This 
connection pattern strongly encourages the reuse of fea-
tures and allows all layers of the architecture to receive 
direct supervision signals.

Multi‑scale convolution module
To learn the relations across lesion features on multi-
ple scales, multiple convolution kernels with different 
receptive fields were parallelly incorporated into the first 
convolution layer of FC-DenseNet to capture variabil-
ity of viewpoint-related object. The module for process-
ing chest X-ray images with varying size of convolution 
kernels is called the multi-scale convolution module. 
GoogLeNet [26] has introduced the multi-scale convo-
lution kernels into a parallel sub-network as a inception 
module, allowing the abstract convolution features with 
different scales to be transported to the subsequent layer 

(1)xl = Hl(xl−1 ⊕ xl−2 ⊕ · · · ⊕ x0).
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simultaneously. The inception module of GoogLeNet 
contains different size of convolution filters such as 1× 1 , 
3× 3 and 5× 5 convolutional kernels, and 3× 3 max-
pooling operation.

In the semantic segmentation task, a small convolu-
tion kernel can help the detection of small target regions, 
and a larger convolution kernel can not only detect the 
larger target regions, but also eliminate the false positive 

regions. Therefore, we add a larger convolution kernel 
( 7× 7 ) to expand the receptive field for the segmentation 
of PTX. To avoid the reduction of segmentation accuracy 
caused by dimension reduction, we also removed the 
1× 1 convolution kernel and 3× 3 max-pooling, mak-
ing the multi-scale convolution kernel module more effi-
ciently in the PTX segmentation architecture. After these 
different convolution operations, all feature maps are 

Chest X-ray Image

Segmentation 
Network

Prediction

Diagnoisis

Classifier

b Dense block with scSE module

c

a

A layer in dense block

d Transition down e Transition up

Fig. 1  The automatic segmentation and diagnosis framework for pneumothorax on chest X-rays. a The proposed segmentation network 
architecture. The difference between our segmentation network and the original FC-DenseNet is marked in red on the subgraph. b An example of 
a dense block embedded with scSE modules. c A layer in the scSE-embedded dense block that consists of batch normalization, exponential linear 
unit, 3× 3 convolution operation, and drop-out rate ρ = 0.2 . d A transition down block, which is composed of batch normalization, exponential 
linear unit, 1× 1 convolution, dropout ( ρ = 0.2 ) and 2× 2 max pooling. (e) A transition up block, which is composed of 3× 3 transposed 
convolution
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channel-wisely concatenated for the subsequent dense 
block (see Fig. 2)

Spatial and channel squeezes and excitation (scSE) module
Most of fully convolutional networks (FCNs)-based seg-
mentation methods mainly focus on the joint space and 
channel encoding. For example, FC-DenseNet can simul-
taneously transmit the spatial and channel information of 
the current filters to the subsequent convolution layers 
to improve the utilization of features. However, spatial- 
and channel-wise independent coding are less utilized. 
Recently, Hu et  al. [27] proposed a framework embed-
ded with squeeze and excitation (SE) blocks to model 
the interdependencies between feature channels, and 
achieved state-of-the-art results in image classification. 
Roy et al. [28] introduced three variants of the SE blocks, 
including the channel SE (cSE) module, the spatial SE 
(sSE) module, and the concurrent spatial and channel 
squeeze and excitation (scSE) module, to migrated the SE 
blocks from image classification to image segmentation 
with promising performance. The purposes of the SE and 
cSE module are to adaptively recalibrate feature maps 
along the channels and to elucidate useful channels while 
suppressing the less useful channels. The cSE module 
can only reweight channels and the sSE module can only 
reweight spaces, while the scSE module can recalibrate 
the feature maps of channels and spaces respectively, and 
then merge these feature maps into output layer.

In this study, we embedded the scSE module into each 
dense block and proposed the application of scSE dense 
block in pneumothorax segmentation (see Fig.  1a, b). 
We denote the input feature maps of a dense block as 
U , U ∈ R

H×W×C , where H, W, and C denote the spa-
tial height, width, and the number of channels, respec-
tively. As illustrated in Fig.  3, the input feature maps U 

can be recalibrated to the output feature maps UscSE , 
UscSE ∈ R

H×W×C , through the two branches of UsSE and 
UcSE . The UscSE can be formulated as:

where UsSE and UcSE are recalibrated from U in spatial 
space and on the channels, respectively. UsSE can pro-
vide more relevant spatial locations by ignoring irrel-
evant spatial locations and UcSE can be adaptively tuned 
to ignore less important channels and to emphasize more 
important channels.

Specifically, UsSE can be obtained from U through a 
1× 1× 1 convolution kernel and a sigmoid function. The 
computing weight of the convolution kerner, denoted as 
Ws , Ws ∈ R

1×1×C×1 , can be used to learn a projection 
tensor Q, where Q ∈ R

H×W  . Then the sigmoid function 
σ(·) is applied to rescale the activations of Q into [0, 1]. 
Hence, UsSE can be defined as:

For the cSE module, a global average pooling operation 
g(·) is first performed on the input feature maps U to 
generate a vector z embedded with globally spatial infor-
mation, where z = g(U) , z ∈ R

1×1×C . Then two con-
secutive fully connected layers are used to convert the 
vector z into a new vector ẑ , ẑ = W1(δ(W2z)) , where W1 
( W1 ∈ R

C× C
2  ) and W2 ( W2 ∈ R

C
2
×C ) denote the weights of 

the two consecutive fully connected layers, respectively, 
and δ(·) denotes the operation of ReLU. Afterwards, we 
apply a sigmoid function σ(·) to normalize the activations 
into [0, 1]. Therefore, the formulation of cSE module can 
be defined as:

(2)UscSE = UsSE + UcSE

(3)UsSE = σ(Ws × U)

(4)UcSE = σ(W1(δ(W2(g(U))))

3 × 3
Convolutions

5 × 5
Convolutions

7 × 7
Convolutions

Filter
Concatenation

Previous Layer

Fig. 2  Multi-scale convolution module. A modified version of 
inception module by removing 1× 1 convolution kernel and 3× 3 
max-pooling and adding a larger convolution kernel ( 7× 7 ) to 
expand the receptive field
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Fig. 3  The concurrent spatial and channel squeeze and excitation 
(scSE) module. The input feature maps of a dense block U can be 
recalibrated to the output feature maps UscSE through the two 
branches of UsSE and UcSE . The top branch is the spatial recalibrating 
( UsSE ), and the bottom branch is channel-wise recalibrating ( UcSE ), and 
then UsSE and UcSE are merged into the output
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In summary, the scSE module combines the advantages 
of sSE module and cSE module, enabling better adap-
tive recalibration of feature maps, so that the scSE dense 
block can elucidate more useful information while sup-
pressing less useful features in the application of pneu-
mothorax segmentation.

Spatially weighted cross‑entropy loss
The serious pixel class imbalance issue between the 
region of interests (ROIs) and the surrounding back-
ground generally exists in medical image segmentation. 
The number of pixels with pathology is much less than 
that without pathology. This tends to cause the learn-
ing model to fall into a local minimum. The typical cross 
entropy loss (CEL), which measures the quantization 
error of all pixels by calculating the pixel-level probabil-
istic error between the predicted output class and the tar-
get class, is susceptible to the class imbalance problem. 
Then weighted cross-entropy loss (W-CEL) is introduced 
to mitigate the effect of class imbalance by giving dif-
ferent weights to target classes and background pixels. 
Meanwhile, dice loss [29] is also proposed to optimize 
the dice overlap coefficient between the predictive seg-
mentation map and the ground truth map. However, due 
to the narrow boundary of the pneumothorax class, it 
is still difficult to distinguish the target classes from the 
background pixels through W-CEL and dice loss. There-
fore, the boundary class is also required to be considered 
along with the target and background classes.

Pneumothorax segmentation is generally formulated as a 
binary classification task with respect to object (pneumo-
thorax) versus background, where ‘0’ is used to represent 
the background pixels and ‘1’ is used to represent the pneu-
mothorax pixels. In this study, if the eight neighborhoods 
of the pixel value ‘1’ have a pixel value of ‘0’, we define this 

pixel value ‘1’ as boundary contour pixels. To formulate the 
boundary contour pixels of pneumothrax, an edge detec-
tor is used to determine whether a pixel is a boundary pixel 
or not, and then the boundary range is cross-expanded by 
morphological dilation. Therefore, a spatial weighted cross-
entropy loss (SW-CEL) is proposed by considering the dif-
ferent weights of target, background and boundary [30]. 
As shown in Fig. 4, spatial weight maps generated from the 
ground-truth images are used to calculate the weight loss of 
each pixel in the cross-entropy loss. The spatially weighted 
cross-entropy (SW-CEL) loss can be formulated as:

where X denotes the training samples, W denotes the 
set of learnable weights, W = (w1,w2, . . . ,wl) , and wl 
denotes the weight matrix of the lth layer. p(ti|xi;W ) 
represents the probability prediction for a pixel xi , and ti 
is the target label of the pixel xi , (xi ∈ X) . wmap(xi) is the 
estimated weight for each pixel xi , which can be defined 
as:

where FT (xi) =
{

0, xi /∈ Tc

1, xi ∈ Tc
 and FB(xi) =

{

0, xi /∈ Bc

1, xi ∈ Bc
 . C 

denotes the set of all ground truth classes, i.e., pneumo-
thorax class and background class. For each chest X-ray 
image, N denotes the set of total pixels and Tc denotes the 
set of pixels corresponding to each class c, c ∈ C , and Bc 
denotes the boundary contour pixel set, Bc ⊂ Tc ⊂ N  . 
FT (xi) and FB(xi) denote the indicator functions defined 
on the subsets Tc and Bc , respectively.

(5)L(X;W ) = −

∑

xi∈X

wmap(xi)log(p(ti|xi;W ))

(6)wmap(xi) =
∑

c∈C

|N |

|Tc|
∗ FT (xi)+

|N |

|Bc|
∗ FB(xi)

Fig. 4  The process of generating the spatial weight map. The groud-truth image b is delineated by radiologist according to the chest X-ray 
image a. Through edge detection and morphological dilation of the boundary contour pixels of the target class, the spatial weight map c can be 
generated from the ground-truth image b. The colors in the spatial weight map represent the weight distribution according to its relative class 
frequency
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Automated classification for pneumothorax diagnosis
Most of previous studies of pneumothorax on chest 
X-ray mainly focous on PTX or not PTX diagnosis with 
image-level annotation. The learning of pneumotho-
rax diagnosis with image-level annotation is a typical 
weakly supervised learning method, which often leads 
to inaccurate locations of pneumothorax lesions because 
the locations of pneumothorax lesions are not marked. 
Pneumothorax segmentation can accurately provide 
pixel-level lesion locations and better assist radiologists 
in pneumothorax diagnosis. In this study, we propose a 
pixel-wise level supervised network for the automatic 
segmentation and diagnosis of PTX (see Fig.  1). Since 
the predicted segmentation maps are the result of binary 
pixel-wise classification network, a simple classifier 
is added and a threshold is set to classify the predicted 
segmentation maps. We specify that if the predicted seg-
mentation map is greater than a threshold, it is pneu-
mothorax; otherwise, it is non-pneumothorax. If the 
threshold is too small, it may be segmentation noise; If 
the threshold is too high, small pneumothorax may be 
missed. Therefore, the threshold is empirically set to 50 
pixels for pneumothorax diagnosis according to the pre-
dicted segmentation maps.

Dataset
The study data was conducted with three-stage proce-
dures. The first stage searched a keyword “pneumotho-
rax” in picture archiving and communications system 
(PACS) of our institution to obtain all relevant chest 
radiographs and radiology reports. In second stage, the 
key word “pneumothorax” was identified in the radio-
logical report, and those without pneumothorax were 
classified as non-pneumothorax (Non-PTX) group, while 
those with pneumothorax were classified as pneumo-
thorax (PTX) group. Third, all image data in PTX group 
was pixel-wisely annotated by three medical students and 
then revised by an experienced radiologist.

Our eligible sample included a total of 11,051 front-
view chest X-ray images (5566 cases of PTX and 5485 
cases of Non-PTX). We named this dataset as “PX-ray”. 
As shown in Table  1, the PX-ray dataset was randomly 
divided into the training, validation and test sets by 
stratified sampling strategy, so as to ensure that the ratio 
of PTX group and Non-PTX group in each set was the 
same.

Evaluation
To evaluate the performance of the PTX segmentation 
network, we used three quantitative metrics: mean pixel-
wise accuracy (MPA), dice similarity coefficients (DSC) 
and Hausdorff distance (HD). Statistical tests were also 

used to show whether there are significant differences in 
the results of different segmentation algorithms. If the p 
value of the statistical test is less than 0.05, there is a sig-
nificant difference between the two results.

MPA is the average ratio of the accuractely classified 
pixels on the classes of PTX and non-PTX, defined as:

where N denotes the number of samples, C denotes the 
number of classes, pc denotes the number of the accu-
ractely classified pixels of class c, and Pc denotes all pix-
els of class c in the ground truths. More importantly, we 
defined the pixel-wise accuracy (PA) of the PTX group 
class as PA1.

DSC is a standard measure for segmentation evaluation 
by calculating the overlap rate between the ground-truth 
map and the predicted segmentation map.

where Ac denotes all pixels of class c in the predicted seg-
mentation map and Bc denotes all pixels of class c in the 
ground-truth map. More importantly, we define the DSC 
of the PTX group class as DSC1.

Hausdorff (HD) metric is also used to measure the con-
tour distance between the ground-truth map and the 
predicted segmentation map, which can be defined as:

(7)MPA =
1

N ∗ C

N
∑

n=1

C
∑

c=1

pc

Pc

(8)PA1 =
1

N

N
∑

n=1

p1

P1

(9)DSC =
1

N

C
∑

c=1

2(Ac ∩ Bc)

Ac + Bc

(10)DSC1 =
1

N
∗
2(A1 ∩ B1)

A1 + B1

(11)H(P,G) =max(h(P,G), h(G,P))

(12)h(P,G) =max
pi∈P

min
gi∈G

||pi − gi||

Table 1  Data distribution description of each subset

Subset PTX Non-PTX Total Percentage (%)

Training 3617 3453 7070 64

Validation 866 902 1768 16

Test 1083 1130 2213 20

Total 5566 5485 11051 100



Page 8 of 12Wang et al. BMC Med Inform Decis Mak 2020, 20(Suppl 14):317

where P and G are the pixel sets of the predicted segmen-
tation map and the ground-truth contours, respectively. 
The smaller the Hausdorff value, the higher the matching 
degree of the two contours.

Detailed settings
All experiments in this study were conducted on Nvidia 
Tesla V100 GPU server. The weights of the PTX segmen-
tation network were initialized with HeUniform [31]. We 
used Adam optimizer ( β1 = 0.9 , β2 = 0.999 ) with learn-
ing rate of 1e− 4 and weight decay of 1e− 4 to train the 
segmentaion network model for 200 epochs. During the 
training process of all models, data augmentation was 
performed by random horizontal flips and the validation 
set was used to early stop the training process. We moni-
tored the dice similarity coefficient (DSC) score in the 
pneumothorax group with patience value of 20 epochs.

Results
The qualitative and quantitative evaluation experiments 
are carried out to show the effectiveness of our proposed 
PTX segmentation and diagnosis framework. We first 
compare the performance of our network with that of 
U-Net [18], SegNet [32], DeepLab v3+ [33], DenseASPP 
[34] and original FC-DenseNet [25]. To verify the efficacy 
of the embedded modules in our segmentation and diag-
nosis network, we also embed the multi-scale module 
and scSE modules into U-Net and develop a new archi-
tecture, named as “MS_scSE_U-Net”, for comparison. 
Note that the above segmentation and diagnosis net-
works share the same hyper-parameters and loss func-
tion SW-CEL during training.

Performance of PTX segmentation
Table 2 shows that our PTX segmentation network, i.e., 
MS_scSE_FC-DenseNet, outperforms U-Net, SegNet, 
DeepLab v3+, DenseASPP and original FC-DenseNet 
in terms of MPA with 0.93± 0.13 , PA1 with 0.86± 0.27 , 
DSC with 0.92± 0.14 and DSC1 with 0.84 ± 0.27 . Mean-
while, our network MS_scSE_FC-DenseNet performs 

better than the original FC-DenseNet, and MS_scSE_U-
Net performs better than the original U-Net, which 
shows that the performance of the network embedded 
with the multi-scale module and scSE modules is better 
than that without them. This indicates that the proposed 
multi-scale module and scSE module play an important 
role in improving the performance of the segmentation 
networks for PTX. In addition, compared with the origi-
nal FC-DenseNet, the parameter number of the proposed 
network increased by 10.59%, but is still much less than 
that of other segmentation networks. Our method has a 
low time cost in terms of giga floating-point operations 
per second (GFLOPS).

Figure  5 shows some result cases of large, moderate 
and small pneumothorax with different segmentation 
algorithms. For each case, we present the orginal chest 
X-ray image, the ground-truth image, and the segmenta-
tion results of the comparison methods and our proposed 
method MS_scSE_FC-DenseNet, as well as the corre-
sponding DSC1 and HD scores. It can be found that our 
method performs better with a larger DSC1 and a smaller 
HD scores, which can more accurately help radiologists 
find the pneumothorax area. In addition, as shown in the 
bottom line of Fig.  5, our algorithm can segement the 
small bilateral thoracic regions that are very difficult for 
radiologists to manually label, indicating the potential of 
our method for clinical computer-assisted diagnosis.

Figure 6 shows qualitative evaluation of our proposed 
PTX segmentation network and the five comparison 
frameworks on the PTX segmentation task. The X-axis 
represents the intervals of DSC score, and the Y-axis 
represents the number of samples falling into the DSC 
intervals from the X-axis. Compared with other frame-
works, our segmentation network has the largest number 
of sample size in the range of [0.9, 1.0] and the smallest 
sample size in the range of [0, 0.6].

Performance of pneumothorax diagnosis
The quantitative performances of pneumothorax diag-
nosis with different models are shown in Table  3. 

Table 2  Result comparisons of different segmentation models

The number with * represents a significant difference comparing other methods to our method, according to student’s T-test for two independent samples ( p < 0.05)

Method MPA PA1 DSC DSC1 Parameters GFLOPS

U-Net [18] 0.90(0.16)* 0.81(0.31)* 0.89(0.17)* 0.79(0.33)* 7,764,098 11.59

SegNet [32] 0.91(0.15)* 0.81(0.31)* 0.90(0.16)* 0.80(0.31)* 29,444,162 40.14

DeepLab v3+ [33] 0.90(0.15)* 0.81(0.30)* 0.89(0.16)* 0.78(0.32)* 59,351,458 61.07

DenseASPP [34] 0.90(0.15)* 0.81(0.30)* 0.89(0.16)* 0.78(0.32)* 35,365,762 39.11

FC-DenseNet [25] 0.91(0.15)* 0.83(0.29)* 0.91(0.15) 0.82(0.29) 5,415,278 15.39

MS_scSE_U-Net 0.92(0.14) 0.85(0.28) 0.90(0.15)* 0.81(0.31)* 8,204,011 11.6

MS_scSE_FC-DenseNet (Ours) 0.93(0.13) 0.86(0.27) 0.92(0.14) 0.84(0.27) 5,989,096 15.59
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Our network shows the best results in terms of accu-
racy, sensitivity, negative predictive value (NPV) and 
F1-score. The original FC-DenseNet shows the best 

performance on specificity and positive predictive 
value (PPV). In addition, all the segmentation networks 
used for PTX diagnosis achieve good performance. This 

Ground-Truth U-Net SegNet DeepLab v3+ DenseASPP FC-DenseNet MS_scSE_U-Net Ours

DSC1:0.98,HD:5.0 DSC1:0.88,HD:11.7 DSC1:0.96,HD:13.0 DSC1:0.97,HD:6.32 DSC1:0.98,HD:4.0 DSC1:0.98,HD:4.47 DSC1:0.99,HD:2.83

DSC1:0.67,HD:32.53

DSC1:0.67,HD:37.00

DSC1:0.74,HD:49.04 DSC1:0.90,HD:16.97 DSC1:0.77,HD:36.50 DSC1:0.96,HD:9.43 DSC1:0.97,HD:3.61 DSC1:0.99,HD:4.00

DSC1:0.83,HD:12.17 DSC1:0.86,HD:28.44 DSC1:0.72,HD:134.21 DSC1:0.68,HD:136.19 DSC1:0.86,HD:14.14 DSC1:0.84,HD:12.65 DSC1:0.91,HD:9.05

DSC1:0.88,HD:11.31 DSC1:0.91,HD:11.40 DSC1:0.92,HD:9.43 DSC1:0.86,HD:11.40 DSC1:0.90,HD:12.73 DSC1:0.90,HD:11.70 DSC1:0.94,HD:8.60

DSC1:0.54,HD:121.82 DSC1:0.60,HD:129.40 DSC1:0.64,HD:119.82 DSC1:0.53,HD:117.52 DSC1:0.61,HD:84.60 DSC1:0.70,HD:33.54

DSC1:0.65,HD:14.32 DSC1:0.79,HD:17.80 DSC1:0.79,HD:17.26 DSC1:0.82,HD:17.0 DSC1:0.89,HD:12.53 DSC1:0.85,HD:16.03 DSC1:0.87,HD:11.00

Chest X-ray

Fig. 5  Segmentation result cases of large, moderate and small pneumothorax with U-Net, SegNet, Deeplab v3+, DenseASPP, FC-DenseNet, MS_
scSE_U-Net and our proposed method MS_scSE_FC-DenseNet, as well as the corresponding DSC1 scores and HD scores. The segmentation results 
of ground truth, comparison methods and our proposed method are marked pastel orange, yellow and red, respectively

Table 3  The quantitative evaluation of pneumothorax diagnosis results with different models

Models Accuracy (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%) F1-score (%)

U-Net [18] 88.39 81.16 95.31 94.31 84.07 87.24

SegNet [32] 90.78 85.87 95.49 94.80 87.58 90.11

DeepLab v3+ [33] 91.10 85.60 96.37 95.76 87.47 90.40

DenseASPP [34] 91.46 86.33 96.37 95.80 88.04 90.82

FC-DenseNet [25] 92.18 84.76 99.29 99.14 87.18 91.39

MS_scSE_U-Net 90.96 85.96 95.75 95.10 87.68 90.30

MS_scSE_FC-DenseNet (Ours) 93.45 88.55 98.14 97.86 89.94 92.97
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indicates great potential for the pixel-wise level super-
vised networks. The pixel-level supervised network not 
only provides image-level information but also provides 
pneumothorax location and size information, which is 
of great help to network learning.

Discussion
In this section, we discuss the effects of different gowth 
rates and loss functions on the pneumothorax segmenta-
tion performance.

The effect of different growth rates
Table  4 discusses that our pneumothorax segmenta-
tion network performance with different growth rate (k) 
parameters. Note that according to students’ t-test of the 
two independent samples, the number with ∗ in the table 
represents that there is a significant difference ( p < 0.05 ) 
between the model with k = 12 and other models. We 
can see that under the same framework, the results grow 
steadily as the value of k increases. The segmentation net-
work with k = 12 shows the best performance. Therefore, 
we use k = 12 model as our final network for pneumo-
thorax segmentation.

The effect of different loss functions
Table 5 discusses the segmentation performance of three 
different loss functions, including CEL, W-CEL and SW-
CEL. In order to further evaluate the performance of the 
loss function, we carry out experiments on our proposed 
network and the previous state-of-the-art networks 
including U-Net [18], SegNet [32], DeepLab v3+ [33], 
DenseASPP [34] and FC-DenseNet [25]. The statistical 
T-tests on the test set indicates that models trained on 

Table 4  Evaluation of pneumothorax segmentation performance with different growth rate k 

The values are provided in the form of mean (standard deviation)

Growth rate mean (standard deviation)

PA k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16

PA1 0.81(0.32)* 0.84(0.28)* 0.84(0.28)* 0.85(0.27) 0.858(0.26) 0.859(0.27) 0.857(0.26) 0.85(0.27)

MPA 0.90(0.16)* 0.92(0.14)* 0.92(0.14)* 0.92(0.14) 0.928(0.13) 0.928(0.13) 0.927(0.13) 0.92(0.13)

DSC k = 2 k = 4 k = 6 k = 8 k = 10 k = 12 k = 14 k = 16

DSC1 0.80(0.32)* 0.81(0.30)* 0.82(0.29)* 0.82(0.29)* 0.832(0.27) 0.838(0.27) 0.833(0.28) 0.83(0.30)

DSC 0.90(0.16)* 0.91(0.15)* 0.91(0.15)* 0.91(0.14)* 0.915(0.14) 0.918(0.14) 0.915 (0.14) 0.91(0.14)

0

200

400

600

800

1000

1200

1400

1600

[ 0 , 0 . 5 ) [ 0 . 5 , 0 . 6 ) [ 0 . 6 , 0 . 7 ) [ 0 . 7 , 0 . 8 ) [ 0 . 8 , 0 . 9 ) [ 0 . 9 , 1 . 0 ]

N
um

be
r 

of
 s

am
pl

es

DSC score ranges

U-Net

SegNet

DeepLab v3+

DenseASPP

FC-DenseNet

Ours

Fig. 6  Qualitative evaluation of our proposed PTX segmentation 
network againsts with the five comparison frameworks for the PTX 
segmentation task. The Y-axis represents the number of contributed 
samples in the test dataset, and the X-axis represents the intervals of 
DSC for each model (columns)

Table 5  Evaluation of segmentation results with different loss function

Method U-Net [18] SegNet [32] DeepLab v3+ [33] DenseASPP [34] FC-DenseNet [25] MS_scSE_FC-DenseNet

DSC1 Mean(Standard Deviation)

 CEL 0.78(0.34) 0.81(0.31) 0.78(0.33) 0.77(0.33) 0.82(0.30) 0.82(0.29)*

 W-CEL 0.79(0.34) 0.80(0.32) 0.77(0.34) 0.76(0.34)* 0.83(0.29) 0.81(0.30)*

 SW-CEL 0.79(0.33) 0.80(0.31) 0.78(0.32) 0.78(0.32) 0.82(0.29) 0.84(0.27)

HD Max(Mean)

 CEL 19.63(3.24)* 17.21(2.53) 17.90(2.80) 20.48(3.20)* 15.47(2.23) 17.81(2.27)*

 W-CEL 19.99(2.80)* 17.21(2.53) 18.41(3.01) 19.74(3.71) 16.22(2.03)* 15.25(2.03)

 SW-CEL 17.76(2.60) 16.34(2.27) 19.56(2.99) 18.52(2.74) 14.81(2.02) 14.87(1.95)
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SW-CEL had no statistical significance in terms of DSC 
scores, while most models trained with SW-CEL showed 
the best performance in terms of Hausdorff distance 
scores. This indicates that the weight penalty for contour 
pixels could help to learn boundary contour accurately.

Conclusion
In this study, we proposed a fully convolutional multi-
scale scSE-DenseNet framework for automatic pneumo-
thorax segmentation and diagnosis, which incorporates 
the advantages of feature reuse of DenseNet and greatly 
reduces a large number of parameters. We used the 
multi-scale module to capture the variability of view-
point-related objects, as well as the scSE modules to 
conduct adaptive recalibration of the feature map and 
to boost meaningful features for better performance. To 
tackle the imbalance problem of pixels, SW-CEL was also 
introduced to better extract the pneumothorax bounda-
ries on chest X-rays. The experiments conducted on 
PX-ray dataset demonstrate that our proposed frame-
work is superior to the five state-of-the-art segmenta-
tion architectures in terms of MPA and DSC scores. This 
framework provides substantial improvements for the 
automatic segmentation and diagnosis of pneumothorax 
and is expected to become a clinical application tool for 
the pneumothorax segmentation and diagnosis.
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