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Can statistical adjustment guided by causal 
inference improve the accuracy of effect 
estimation? A simulation and empirical research 
based on meta‑analyses of case–control studies
Ruohua Yan1, Tianyi Liu1,2, Yaguang Peng1 and Xiaoxia Peng1* 

Abstract 

Background:  Statistical adjustment is often considered to control confounding bias in observational studies, espe-
cially case–control studies. However, different adjustment strategies may affect the estimation of odds ratios (ORs), 
and in turn affect the results of their pooled analyses. Our study is aimed to investigate how to deal with the statistical 
adjustment in case–control studies to improve the validity of meta-analyses.

Methods:  Three types of adjustment strategies were evaluated including insufficient adjustment (not all preset 
confounders were adjusted), full adjustment (all confounders were adjusted under the guidance of causal inference), 
and improper adjustment (covariates other than confounders were adjusted). We carried out a series of Monte Carlo 
simulation experiments based on predesigned scenarios, and assessed the accuracy of effect estimations from meta-
analyses of case–control studies by combining ORs calculated according to different adjustment strategies. Then we 
used the data from an empirical review to illustrate the replicability of the simulation results.

Results:  For all scenarios with different strength of causal relations, combining ORs that were comprehensively 
adjusted for confounders would get the most precise effect estimation. By contrast, combining ORs that were not 
sufficiently adjusted for confounders or improperly adjusted for mediators or colliders would easily introduce bias in 
causal interpretation, especially when the true effect of exposure on outcome was weak or none. The findings of the 
simulation experiments were further verified by the empirical research.

Conclusions:  Statistical adjustment guided by causal inference are recommended for effect estimation. Therefore, 
when conducting meta-analyses of case–control studies, the causal relationship formulated by exposure, outcome, 
and covariates should be firstly understood through a directed acyclic graph, and then reasonable original ORs could 
be extracted and combined by suitable methods.
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Background
Meta-analysis is a well-developed statistical methodol-
ogy to synthesize results of multiple original studies [1]. 
Since it increases the sample size for a specific research 
question by combining data from different independent 
studies, meta-analysis enhances the accuracy of effect 
estimation and improves the strength of evidence [2]. The 
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basic assumption of meta-analysis is that each included 
study provides an unbiased estimator, i.e., the variabil-
ity of results is only attributed to random error but not 
systematic error [3]. Therefore, randomized controlled 
trial (RCT) with low risk of bias is acknowledged as a 
“combinable” study type for meta-analysis [4]. However, 
for certain conditions, especially in public health fields, 
RCTs may be unavailable in consideration of feasibility, 
ethics, or time, while observational studies or genome-
wide association studies can provide supplementary 
information that experimental studies cannot reflect [5, 
6].

During the  past few decades, a growing number of 
meta-analyses are conducted in observational settings 
and genetic areas [7, 8]. Compared with RCTs, obser-
vational studies, especially case–control studies, are 
exposed to several potential risk of bias which may 
bring systematic errors in effect estimations [9]. Besides 
of selection bias and information bias, confounding is 
a kind of important bias that may distort the associa-
tion between exposure and outcome. Particularly when 
the association strength is weak or medium, confound-
ing may even reverse the direction of causal inference. 
Therefore, when conducting meta-analyses of case–con-
trol studies, all potential bias of original studies should 
be properly addressed [10, 11]. Selection bias and infor-
mation bias can be evaluated and restricted by the New-
castle–Ottawa Scale in the process of meta-analyses 
[12]. Confounding bias, however, is always adjusted in 
the analysis phase of original studies. Logistic regression 
model is one of the most widely used approaches to con-
trol multiple confounders simultaneously, and odds ratio 
(OR) is a common estimator of causal effect.

In our previous study, we have made a secondary data 
analysis based on all meta-analyses of passive smoking 
and breast cancer in non-smoking women published 
from 1966 to 2016, as well as all original studies included 
in these meta-analyses [13]. We found an apparent incon-
sistency in statistical methodology among meta-analyses 
of case–control studies, including the selection of crude 
or adjusted OR for the calculation of pooled OR, and 
the number of covariates adjusted in original case–con-
trol studies. These inconsistencies might introduce het-
erogeneity of original studies and challenge the validity of 
meta-analysis. Although we detected these phenomena 
from a single case study, it is hard to draw conclusions 
and extrapolate to other meta-analyses of case–control 
studies. Furthermore, the empirical research cannot tell 
the true effect based on the  counterfactual hypothesis, 
and thus cannot judge which adjustment strategy has the 
best precision in estimating the true effect.

Therefore, we designed this simulation study to assess 
the accuracy of effect estimations from meta-analyses 

by combining ORs of original case–control studies cal-
culated according to different adjustment strategies. The 
strategies included fully adjustment of all preset con-
founders guided by causal inference, insufficiently adjust-
ment of less confounders, and improperly adjustment 
of covariates other than confounders such as mediators 
or colliders. We set several scenarios and compared the 
performances of pooled ORs, and thereby provided rec-
ommendations on how to choose original ORs for meta-
analyses under different circumstances. Then we used the 
data from an empirical review to give illustrations.

Methods
Simulation study
We carried out a series of Monte Carlo simulation exper-
iments to create original case–control studies and their 
meta-analyses. The design of the simulation study is dis-
played in Additional file 1: Figure S1. We first simulated 
a target population with pre-determined exposure, out-
come, and covariates (Additional file  1: Table  S1) [14]. 
Then we randomly selected cases and controls from the 
population, and generated a number of case–control 
studies according to predesigned scenarios (Additional 
file  1: Table  S2). We calculated series of ORs for each 
case–control study by adjusting for different covari-
ates. Then we conducted meta-analyses to pool these 
ORs [15]. The above-mentioned process was repeated 
for 1000 times to obtain the empirical distribution of 
pooled OR [16]. The simulation assumed that all gener-
ated case–control studies were free from selection bias 
and information bias, and thus confounding bias was the 
major cause of systematic error that need to be carefully 
examined.

Generation of target population
Suppose that we are interested in the causal effect of a 
dichotomous exposure variable A (1: exposed, 0: unex-
posed) on a dichotomous outcome variable Y (1: case, 
0: control). The causation from A to Y can be reached 
in four ways, i.e., the direct path A → Y, the indirect 
path through mediators A → M → Y (M denotes a set of 
mediators of A and Y), the backdoor path through com-
mon causes A ← L → Y or A ← L → R → Y (L denotes 
a set of confounders of A and Y, and R denotes a set of 
risk factors of Y that have no causations with A), and 
the front-door path by conditioning on common effects 

(C denotes a set of colliders of A and Y). The 
simplified causal directed acyclic graph (DAG) between 
A and Y is shown in Fig. 1, and the interpretation of the 
DAG is provided in Additional file 1: Method S1.

Without loss of generality, we assumed a vector of 6 
dichotomous confounders L = [L1, L2, …, L6] was suf-
ficient to block all backdoor paths from A to Y. Only a 
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dichotomous risk factor R, a dichotomous mediator M, 
a dichotomous collider C existed in the A-Y causal path-
way. R was affected by L1, L2, L3, and L4. By specifying the 
positive probabilities of all variables and the association 
parameters, a target population with certain number of 
observations would be generated. Detailed method is 
shown in Additional file 1: Method S2.

Generation of case–control studies
From the target population, a series of case–control stud-
ies would be generated using random sampling method. 
For each case–control study, 11 original ORs were cal-
culated by different adjustment strategies. One kind of 
strategy was insufficient adjustment, i.e., not all con-
founders were controlled in the logistic regression model. 
The effect of A on Y was estimated by adjusting for 0 to 
5 measured confounders, respectively. One kind of strat-
egy was full adjustment, i.e., all confounders identified in 
Fig. 1 (L1 to L6) were controlled. The other kind of strat-
egy was improper adjustment, i.e., covariates other than 
confounders were controlled in the logistic regression 
model. The effect of A on Y was estimated by adjusting 
for L1 to L6 plus R, M, C, and all, respectively. Detailed 
method is shown in Additional file 1: Method S3.

Generation of meta‑analyses
Meta-analyses were generated by combining several 
case–control studies, and pooled ORs were estimated 
under each adjustment strategy with fixed-effects model 
of the inverse variance method or two-stage random-
effects model of the DerSimonian and Laird method as 
appropriate. We compared the 11 pooled ORs with the 
true effect specified in the target population, and thereby 
evaluated the performances of 11 adjustment strategies. 

Detailed method is shown in Additional file  1: Method 
S4.

Scenario settings
Several factors may affect the performance of adjustment 
strategies. The first is the causation between exposure A 
and outcome Y in the  target population, including the 
total effect of A on Y (ORAY), the independent associa-
tions of covariates U = [L, R, M, C] with A (ORUA) and 
Y (ORUY), and the correlations among different variables 
of U (rUU). Suppose that the positive probabilities of A, 
Y, and U were 20% in subjects unexposed to any parent 
variables, and the associations of U with A or Y were 
equal. We specified (1) ORAY, (2) ORUA, and (3) ORUY as 
0.2, 0.5, 0.8, 1, 1.25, 2, or 5 in different scenarios to rep-
resent strong, medium, weak, and no associations with 
opposite directions. We also specified (4) rUU as 0, 0.2, 
0.5, or 0.8, with rUU ≠ 0 indicating the nonindependence 
of covariates.

The second factor that may affect the performance of 
adjustment strategies is the sample size of the  original 
case–control studies, which involves the number of cases 
and the matching approach (matching ratio). To reflect 
various scales of original studies, we specified (5) the 
number of cases as 20, 100, or 500, and (6) the matching 
approach as frequency matching or individual matching 
(base on L6; 1:1, 1:2, or 1:4). Case–control studies with 
individual matching design should be analyzed using 
conditional logistic regression models.

The third factor that may affect the performance of 
adjustment strategies is the number of original studies 
included and the pooling method used in the meta-analy-
ses. We specified (7) the number of original studies as 5, 
20, or 50, referring to real meta-analyses extracted by our 

Fig. 1  Directed acyclic graph in the target population. A, exposure; Y, outcome; L, confounder; R, risk factor; M, mediator; C, collider. The causation 
from A to Y can be reached in four ways: (1) the direct path A → Y; (2) the indirect path through mediators A → M → Y; the backdoor path through 
common causes A ← L → Y or A ← L → R → Y; and (3) the front-door path by conditioning on common effects 
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previous research [13]. We also specified (8) the pooling 
method as fixed-effects model, random-effects model, or 
either depended on the result of heterogeneity test (if the 
P value of the Q test ≥ 0.1, then fixed-effects model, else 
random-effects model). Detailed scenario settings are pre-
sented in Additional file 1: Table S2.

Performance measures
A total of 32 scenarios were designed. In each scenario, 
1000 meta-analyses of case–control studies were gener-
ated, and 1000 pooled ORs of exposure A on outcome 
Y were estimated for certain adjustment strategies. The 
parameter β = ln(ORAY) was of interest.

The repetition times (n = 1000) was decided by the equation 
n = (Zα/2σ/δ)

2 [16], where Zα/2 was the 1− α/2 quantile of 
the standard normal distribution ( α = 0.05 ), σ was the stand-
ard deviation for β ( σ = 0.16 referring to real meta-analyses 
extracted by our previous research [13]), and δ was the per-
missible difference from the true value of β (1000 repetitions 
could at least ensure the accuracy of estimated β̂  achieve 
δ = 0.01 , i.e., the accuracy of estimated ÔR archive 1%).

The Monte Carlo means of pooled ORs were calculated 

by exp
(

−

β

)
= exp

[
(1/n)

∑n
i=1 β̂i

]
 , while the confidence 

intervals (CIs) were calculated by 

exp

[
β ± Zα/2 ×

√
(1/n − 1)

∑n
i=1

(
β̂i − β

)2
]
 . The per-

formance of different adjustment strategies was evaluated 
by the following 6 measures based on β̂  [16, 17]:

bias =
1

n

n∑

i=1

(
β̂i − β

)

relative bias =

[
1

n

n∑

i=1

(
β̂i − β

)
/β

]
× 100%,whenβ �= 0

mean square error(MSE) =
1

n

n∑

i=1

(
β̂i − β

)2

width of CI =
1

n

n∑

i=1

(
β̂upp,i − β̂low,i

)

coverage =

[
1

n

n∑

i=1

1
(
β̂low,i ≤ β ≤ β̂upp,i

)]
× 100%

power =

[
1

n

n∑

i=1

1
(
β̂low,i > 0orβ̂upp,i < 0

)]
× 100%,whenβ �= 0

where β̂upp and β̂low represented the upper and lower lim-
its of the CI of β̂  (based on normal distribution), respec-
tively. Specially, when ORAY = 1 ( β = 0 ) in scenario 1–4, 
coverage was equal to the probability of not making type 
I error, while in other scenarios that ORAY ≠ 1 ( β  = 0 ), 
power was equal to the probability of not making type II 
error. To further evaluate the performance distinctions 
among adjustment strategies were true difference or ran-
dom deviation, the Monte Carlo standard error of each 
measure was calculated [17]. All simulation processes 
and statistical analyses were conducted by SAS 9.4. The 
main SAS code is presented in Additional file 2.

Empirical research
We chose an empirical meta-analysis focused on passive 
smoking and breast cancer in nonsmoking women to 
illustrate the replicability of the above simulation experi-
ments [18]. Similar to the process of the simulation study, 
we firstly investigate the causal relationship among pas-
sive smoking, breast cancer, and potential confounders 
through a DAG. The DAG was determined on both lit-
erature evidence and subject-matter knowledge, i.e., the 
nodes of the  DAG were identified by variables adjusted 
in each original case–control study, and the direction of 
arrow between every two nodes was judged by the author 
and was further approved by clinical experts.

Then we selected original ORs that were calculated by 
the most appropriate adjustment strategy based on the 
causal diagram. Fixed- or random-effects model was 
used to pool ORs according to the size of heterogeneity 
(decided by the significance of the Q test). Publication 
bias was assessed by funnel plots. Moreover, sensitiv-
ity analyses were conducted to combine original ORs 
that seemed to underestimate and overestimate the 
true effect, respectively, through the guidance of causal 
inference. All meta-analyses were performed with 
Review Manager 5.3.

Results
Effect estimations in meta‑analyses of case–control studies
Among all scenarios defined in the simulation study, set 
scenario Ref be the primary analysis. Figure 2 presents 
the Monte Carlo pooled ORs of meta-analyses in sce-
nario Ref. When no covariates were adjusted in origi-
nal case–control studies, the average effect estimation 
of meta-analyses was 2.82 (95% CI 2.46–3.22), which 



Page 5 of 11Yan et al. BMC Med Inform Decis Mak          (2020) 20:333 	

significantly overestimated the true effect of exposure 
A on outcome Y (ORAY = 2). The overestimation gradu-
ally decreased with the adjustment of more confound-
ers. Combining original ORs that adjusted for all 6 
confounders had a mean pooled OR of 2.01 (95% CI 
1.72–2.32), which was the closest estimation to ORAY. 
Further adjusted for risk factor did not substantially 
change the estimation (OR 2.05; 95% CI 1.74–2.36). 
However, further adjusted for mediator or collider in 
addition to confounders did underestimate the true 
effect. The underestimation was similar for mediator 
and collider, if they had an equal association strength 
with exposure and outcome. A more particular inter-
pretation of the results is shown in Additional file  1: 
Result S1 and Additional file 1: Figure S2.

Performances of statistical adjustment strategies
Figure  3 displays the performances of statistical adjust-
ment strategies in different scenarios. MSE, which is a 
comprehensive indicator for variance and bias 
( MSE = Var

(
β̂

)
+ bias2 ), was closest to 0 when combin-

ing original ORs that fully adjusted for 6 confounders but 
not needlessly adjusted for other covariates. With more 
insufficient or improper adjustment of covariates in orig-
inal studies, the estimated parameter β̂  was more away 
from the true value. Detailed data are in Additional file 1: 
Table S3–S10.

Coverage showed similar tendencies with MSE, i.e., CI 
estimations based on full adjustment strategy had the 
highest coverage rate to the true effect (Additional file 1: 
Figure S3).

Power was large in most scenarios where the total effect 
of exposure A on outcome Y (ORAY) was specified as 2. 
However, for scenarios 1–3 and 1–5 with weaker effects 
(ORAY = 0.8 and 1.25, respectively), power became insuf-
ficient and type II error rate exceeded 20% under inap-
propriate adjustment strategies. Moreover, for scenario 
1–4 with null effect (ORAY = 1), type I error rate exceeded 
5% if confounders were not adjusted under the guidance 
of causal inference. Error rates were acceptable only for 
full adjustment strategy when ORAY was around 1 (Fig. 4).

Although the accuracy of effect estimation under each 
adjustment strategy was sensitive to ORAY in the  tar-
get population, it was rarely affected by ORUA, ORUY, or 
rUU, except for some extreme situations. Characteristics 
of case–control studies and meta-analyses also had little 
impact on the precision of pooled ORs. A more particu-
lar interpretation of the results is shown in Additional 
file 1: Result S2 and Additional file 1: Figure S4.

Empirical illustrations
From the simulation experiments we noticed that, in 
order to get accurate estimations of causal effect in meta-
analyses, ORs calculated by appropriate adjustment strat-
egies in original case–control studies should be extracted 
and combined. However, how to apply our simulation 
results in practice is still unclear. We now use a meta-
analysis conducted by Lee and Hamling in 2016 to give 
illustrations [18].

The meta-analysis was focused on passive smoking and 
risk of breast cancer in nonsmoking women. Since the 
research question could not be fulfilled by experimental 

Fig. 2  Pooled ORs of meta-analyses in scenario Ref (ORAY = 2). OR, odds ratio; CI, confidence interval; A, exposure; Y, outcome. Pooled crude OR (no 
covariates) overestimated the true effect. The overestimation gradually decreased with the adjustment of more confounders. Pooled full-adjusted 
OR (6 confounders) had the closest effect estimation. Further adjustment of risk factor, mediator or collider slightly affected the estimation accuracy. 
Pooled all-adjusted OR (all covariates) underestimated the true effect
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studies due to ethical reasons, all 47 original studies 
involved in the meta-analysis were observational studies. 
Among them, 30 were case–control studies, 15 were pro-
spective studies, and 2 were case–control studies nested 
within prospective studies. In the principal analysis, 29 
case–control studies and 16 prospective studies were 
included, with the pooled effect estimations as 1.26 (95% 
CI 1.13–1.41) and 1.02 (95% CI 0.97–1.08), respectively. 
A clear difference has been found between study types 

(P < 0.001). We supposed that the result of prospective 
studies might be more credible, since prospective stud-
ies generally exposed to less bias and provided relatively 
higher quality of evidence. However, without a back-
ground knowledge of the true effect, we could not defi-
nitely conclude whether the association existed or not. 
Therefore, we tried to re-analyze the data from the case–
control studies and give a more decisive causal inference.

First of all, the causal relationship between passive 
smoking and breast cancer should be understood. We 
summarized the information of 29 original case–control 
studies in Additional file 1: Table S11, where the adjusted 
covariates were potential confounders identified by each 
study. However, most studies controlled variables that 
showed significance in baseline comparisons or univari-
ate analyses, without distinguishing confounders with 
risk factors, mediators, or colliders. We should draw a 
DAG to make detailed differentiation (Additional file  1: 
Result S3).

Based on the DAG in Additional file  1: Figure S5, we 
evaluated the accuracy of original ORs and made stratifi-
cation analysis. Among 29 case–control studies, 8 (27.6%) 
gave reasonable effect estimations and were included in 
the primary analysis. Meanwhile, 12 (41.4%) were under-
estimated due to not adjusting for negative confounders 
of family history (2/12), adjusting for mediators of benign 
breast disease (9/12), or adjusting for colliders of car-
diovascular disease (1/12); 9 (31.0%) were overestimated 

Fig. 3  Mean square error of effect estimations under different adjustment strategies. Mean square error was presented according to different a 
ORAY, b ORUA, c ORUY, and d rUU in the target population; e number of cases and f matching approach in the original case–control studies; and g 
number of studies and h pooling method in the meta-analyses. The y-axis limits differ between plots. OR, odds ratio; A, exposure; Y, outcome; U, 
covariate. For all scenarios, pooled full-adjusted ORs showed the least mean square error. With insufficient or improper adjustment of covariates in 
original studies, the pooled effect estimations were away from the true value

Fig. 4  Error rate of effect estimations under different adjustment 
strategies. Error rate was presented according to different ORAY in 
the target population. Solid symbol represents type II error (where 
ORAY ≠ 1), and hollow symbol represents type I error (where ORAY = 1). 
OR, odds ratio; A, exposure; Y, outcome. When ORAY was away from 
1, error rate was low for every adjustment strategy. When ORAY was 
around 1, error rate was acceptable only for full adjustment strategy
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due to not adjusting for positive confounders of age or 
body mass index (Additional file  1: Table  S11). None of 
the original studies were subject to the risk of overfitting. 
From the forest plot in Fig. 5, we detected a weak but sig-
nificant association between passive smoking and breast 
cancer in primary analysis (OR 1.18; 95% CI 1.01–1.39). 
Underestimated results slightly shrank the effect and 

gave a false negative estimation (OR 1.15; 95% CI 0.99–
1.33). Overestimated results substantially amplified the 
effect (OR 1.62; 95% CI 1.17–2.25). The fixed-effects OR 
of primary analysis (1.18; 95% CI 1.07–1.29) was same to 
the random-effects OR. The funnel plot in Fig. 6 further 
showed that, compared with underestimated or over-
estimated results that might expose to publication bias 

Fig. 5  Forest plot of an empirical meta-analysis on passive smoking and breast cancer [18]. SE, standard error; IV, inverse variance; CI, confidence 
interval. A weak but significant association between passive smoking and breast cancer was detected in primary analysis. Underestimated results 
slightly shrank the effect and gave a false negative estimation, while overestimated results substantially amplified the effect
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(studies with few cases tended to report positive associa-
tions), original ORs in primary analysis were symmetri-
cally scattered on both sides of 1.18 with relatively small 
standard errors. Therefore, we believed there is a causal 
relationship between passive smoking and breast cancer 
in non-smoking women. The conclusion was consistent 
with the main finding of Lee and Hamling’s review, that 
the relative risk from all 45 observational studies was 1.15 
(95% CI 1.07–1.23) [18].

Discussion
Our study used simulation technique and found that 
statistical adjustment strategy guided by causal infer-
ence would improve the accuracy of effect estimation 
from meta-analyses of case–control studies. For all sce-
narios with different strength of causal relations, com-
bining original ORs that were comprehensively adjusted 
for confounders would get the most precise estimation 
of pooled effect, regardless of the sampling approaches 
of case–control studies and the scale of meta-analysis. 
By contrast, combining original ORs that were not suf-
ficiently adjusted for confounders or improperly adjusted 
for mediators or colliders would easily introduce bias in 
causal interpretation, especially when the true effect of 
exposure on outcome was weak or none.

The findings of our simulation study were further veri-
fied by an empirical research, that is, pooled OR cal-
culated by appropriate adjustment strategy yielded an 
unbiased estimation of the causal effect. By construct-
ing a DAG with the help of adjusted variables identi-
fied by each original study in a systematic review, we 
could judge which study gave credible results, and com-
bined the results together for pooled effect estimation. 
Other underestimated or overestimated results could be 
considered in sensitivity analysis to support the causal 
interpretation.

Advantages and disadvantages of adjustment strategies
Our study compared three types of adjustment strat-
egies (insufficient adjustment, full adjustment, and 
improper adjustment), and evaluated their impacts on 
pooled effect estimations of meta-analyses in different 
scenario settings. Full adjustment strategy is the rec-
ommended approach, because it can well eliminate the 
confounding bias while not cause other biases. Particu-
larly when the effect size is weak or none, confounding 
bias may distort or even reverse the statistical inference. 
Full adjustment strategy can sufficiently control the bias 
in accordance with causal framework, and simultane-
ously avoid involving in mediation or colliding effect. The 

Fig. 6  Funnel plot of an empirical meta-analysis on passive smoking and breast cancer [18]. The blue dashed lines were based on all studies 
included in the meta-analysis. SE, standard error; OR, odds ratio. Compared with underestimated or overestimated results that might expose to 
publication bias, original ORs in primary analysis were symmetrically scattered around the dashed vertical line with relatively small standard errors
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major disadvantage of full adjustment strategy is that, it 
is difficult to judge whether the confounders were suffi-
ciently adjusted and whether the adjusted covariates were 
confounders without the help of a DAG. Therefore, the 
construction of DAG is very important for researchers to 
extract credible ORs, and should become a standard pro-
cedure of meta-analyses.

Insufficient adjustment strategy cannot completely 
control the confounding bias. A typical example of insuf-
ficient adjustment strategy is univariate analyses, i.e., 
no covariates are adjusted for the calculation of original 
OR. Some meta-analyses combined these crude ORs to 
ensure statistical homogeneity [19, 20]. However, the 
heterogeneity brought by confounding bias is far larger 
than that brought by different adjusted covariates. Since 
pooled crude OR does not consider any potential con-
founders, it shows the worst accuracy and robustness in 
effect estimation.

Improper adjustment strategy may be interfered by the 
mediation or colliding effect that reduce the estimation 
accuracy. But it is commonly seen in practice, because 
researchers of original studies tend to include as many 
measured variables as possible in the regression model if 
the sample size allows. They may not carefully distinguish 
confounders from mediators or colliders, which have 
similar association patterns with exposure and outcome. 
Or they may provide several ORs calculated by different 
models, some adjusted for clear confounders, and some 
adjusted for all relative factors. Meta-analyses generally 
pooled most-adjusted ORs, with the assumption that 
the more the variables are adjusted, the smaller the con-
founding bias [21–23]. However, if variables other than 
confounders are misadjusted, the pooled results will also 
be biased. In addition, a few meta-analyses used crude 
OR from part of original studies, and used adjusted OR 
from the other part [24, 25]. This approach cannot appro-
priately control the confounding bias, and cannot meet 
statistical homogeneity either. In summary, full adjust-
ment is better than all other strategies for meta-analyses 
of case–control studies.

Comparisons with previous studies
Nowadays, computing methods such as intelligent data 
analysis [26, 27], data mining [28, 29], and machine 
learning [30] have been increasingly used to support 
healthcare decision-making. Among them, simulation 
is becoming a powerful supplement to empirical medi-
cal researches, especially when the outcomes cannot be 
derived from mathematical formulae or experimental 
replications [31]. The thought of Monte Carlo simulation 
has been widely applied in the field of epidemiology [32, 
33]. Regarding our study, because the true causal effect 
could not be obtained from real meta-analyses, and the 

possible adjustment strategies could not be exhausted by 
real case–control studies, empirical researches were not 
able to give confirmative conclusions, while statistical 
simulation was a good solution.

On the other hand, empirical research is also an impor-
tant illustration of simulation results. Compared with the 
methodological representation, the practical application 
of the findings is always of value. By analyzing a moti-
vating example, the reason for conducting the simula-
tion study would be clarified, and the parameter settings 
of the scenarios would be justified. Moreover, a proper 
instance would help the technical paper popularize to 
non-technical audiences.

To our knowledge, this is the first simulation study to 
evaluate how adjustment strategies of original case–
control studies impact the pooled effect estimations of 
meta-analyses. From our previous case study on meta-
analyses of passive smoking and breast cancer [13], we 
detected an inconsistency in adjustment strategies used 
for calculating original ORs, which might not eliminate 
confounding bias but introduce new bias during meta-
analyses. However, the previous study could not deter-
mine the best strategy without knowing the true effect, 
and could not extrapolate the best strategy to other situ-
ations as well. In the present study, by specifying the true 
OR of exposure on outcome and setting various param-
eters in multiple scenarios, we compared the accuracy of 
adjustment strategies under different circumstances and 
gave methodological recommendations correspondingly. 
Our findings are expected to help improve the validity of 
meta-analyses of case–control studies, and provide high-
quality evidence for medical decision-making.

Hypotheses and limitations
Although our findings provide important implications on 
how to choose original ORs of case–control studies for 
meta-analyses, caution is needed when the situation is 
more complex. First, we set a relatively fixed causal mode 
between exposure and outcome, and prespecified 6 con-
founders, a risk factor, a mediator, and a collider in the 
target population due to feasibility and availability con-
siderations. While in real-world applications, the num-
ber of covariates and the inter-covariate causations were 
far more flexible. Since our study mainly focused on the 
causal attributes of the adjusted variables rather than the 
number of them, we made a general assumption without 
loss of generality. The potential impact of confounder 
numbers on the meta-results could be evaluated in future 
studies.

Second, we assumed all generated case–control stud-
ies were conducted in an ideal circumstance without 
selection bias and information bias. However, in prac-
tice, it is difficult to ensure the quality of original studies. 
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Therefore, the potential biases of original studies should 
be carefully evaluated [12], and the consequent clinical 
or methodological heterogeneity among original stud-
ies should be controlled, either by statistical approaches 
such as random-effects model or meta-regression, or 
by subgroup analysis to pool all “combinable” results 
together [34, 35]. Otherwise, if the methodologies of 
original studies are far from each other, qualitative sys-
temic reviews rather than quantitative pooled analyses 
are recommended [9, 36].

Third, we made all statistical adjustment in case–con-
trol studies based on logistic regression models. But in 
real cases, other adjustment methods such as propensity 
score and instrument variable are also used [37]. How to 
combine the results calculated by different adjustment 
methods need to be further investigated.

Fourth, we combined case–control studies by fixed-
effects model with the inverse variance method or two-
stage random-effects model with the DerSimonian and 
Laird method, because they are the recommended meth-
ods of the Cochrane Collaboration [38]. However, there 
are many other random-effects generalized linear mixed 
models, heterogeneity variance estimators, and CI calcu-
lation methods that might be more suitable for statistical 
inference in certain circumstances [39–41]. As our study 
did not aim at the selection of pooling methods of meta-
analyses, we did not make a wider expansion. But for bet-
ter practical applications, the random-effects models and 
the variance estimation methods should be detailly con-
sidered in the future.

Fifth, we focused on meta-analyses of case–control 
studies, while in most actual reviews, observational stud-
ies including case–control studies and cohort studies are 
combined together to calculate pooled ORs. Compared 
with case–control studies, cohort studies are exposed to 
more uncertain factors, such as different follow-up dura-
tions, different rates of loss to follow-up, etc. Whether 
the results of the present study are still valid for meta-
analyses of cohort studies, is another important question 
to be answered in our future research.

Conclusions
Statistical adjustment strategy guided by causal inference 
are recommended for effect estimations. Thus, when con-
ducting meta-analyses of case–control studies, the causal 
relationship between exposure and outcome should be 
firstly understood through a DAG, and then reasonable 
original ORs should be extracted and combined by suit-
able methods to get accurate pooled ORs.
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