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Abstract 

Background:  Statistical data analysis, especially the advanced machine learning (ML) methods, have attracted con‑
siderable interest in clinical practices. We are looking for interpretability of the diagnostic/prognostic results that will 
bring confidence to doctors, patients and their relatives in therapeutics and clinical practice. When datasets are imbal‑
anced in diagnostic categories, we notice that the ordinary ML methods might produce results overwhelmed by the 
majority classes diminishing prediction accuracy. Hence, it needs methods that could produce explicit transparent 
and interpretable results in decision-making, without sacrificing accuracy, even for data with imbalanced groups.

Methods:  In order to interpret the clinical patterns and conduct diagnostic prediction of patients with high accuracy, 
we develop a novel method, Pattern Discovery and Disentanglement for Clinical Data Analysis (cPDD), which is able 
to discover patterns (correlated traits/indicants) and use them to classify clinical data even if the class distribution 
is imbalanced. In the most general setting, a relational dataset is a large table such that each column represents an 
attribute (trait/indicant), and each row contains a set of attribute values (AVs) of an entity (patient). Compared to the 
existing pattern discovery approaches, cPDD can discover a small succinct set of statistically significant high-order 
patterns from clinical data for interpreting and predicting the disease class of the patients even with groups small and 
rare.

Results:  Experiments on synthetic and thoracic clinical dataset showed that cPDD can 1) discover a smaller set of 
succinct significant patterns compared to other existing pattern discovery methods; 2) allow the users to interpret 
succinct sets of patterns coming from uncorrelated sources, even the groups are rare/small; and 3) obtain better per‑
formance in prediction compared to other interpretable classification approaches.

Conclusions:  In conclusion, cPDD discovers fewer patterns with greater comprehensive coverage to improve the 
interpretability of patterns discovered. Experimental results on synthetic data validated that cPDD discovers all pat‑
terns implanted in the data, displays them precisely and succinctly with statistical support for interpretation and 
prediction, a capability which the traditional ML methods lack. The success of cPDD as a novel interpretable method 
in solving the imbalanced class problem shows its great potential to clinical data analysis for years to come.
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Background
Clinical diagnostic decisions have a direct impact on the 
outcomes and treatment of patients in the clinical set-
ting. As large volumes of biomedical and clinical data 
are being collected and becoming available for analy-
sis, there is an increasing interest and need in applying 
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machine learning (ML) methods to diagnose diseases, 
predict patient outcomes and propose therapeutic treat-
ments. Today, Deep Learning (DL) has been successful 
in assisting analysis and classifying medical scans, espe-
cially those forms of visual data. However, when deal-
ing with relational datasets where no explicit pattern 
(except the class label if given) could be extracted from 
the input data to relate to the decision targets, the ML/
DL process remains opaque. In addition, existing ensem-
ble algorithms, such as Boosted SVM, or Random Forest 
could produce good predictive results, but the underlying 
patterns in support of the decision are still opaque and 
uninterpretable for the clinicians [1]. Hence, existing ML 
approaches on relational data are still encountering diffi-
cult problems concerning transparency, low data volume, 
and imbalance classes [2, 3].

To render transparency and interpretability, Decision 
Tree, Frequent Pattern Mining or Pattern Discovery were 
proposed. For decades, Frequent Pattern Mining [4–6] is 
an essential data mining task to discover knowledge in 
the form of association rules from relational data [6]. The 
association rules or patterns are made up of co-occurring 
items or attribute values (AVs) referred to as Attribute 
Value Associations (AVAs). However, as revealed in our 
recent work [7–9], the AVA forming patterns of different 
classes/targets could be overlapping or entangling with 
each other due to multiple entwining functional charac-
teristics or factors of different groups/classes inherent 
in the source environments. For example, in the clini-
cal practice, the relation between the input (in terms of 
inherent patterns apart from the given class label) and 
the output (decision targets/classes) is not that obvious, 
particularly when the correlation of signs, symptoms, 
test results of the patients could be the manifestation of 
multiple factors. The patterns discovered directly from 
the acquired data may have overlapping or functionally 
entwined AVAs as observed from our recent works [7, 9]. 
We call this pattern entanglement.

Hence, we present a new classification method, called 
Clinical Pattern Discovery and Disentanglement (cPDD), 
with novel capability to tackle this problem, particularly 
focused on the imbalanced class problem. The algorithm 
is briefly described in Fig. 1 by taking a relational dataset 
R says with N attributes as input.

Firstly, Attribute-Value Association Frequency 
Matrix (AVAFM) is constructed, where the Attribute-
Value Association (AVA) is defined as the association 
between a pair of AVs (from different attributes). The 
AVAFM consists of the frequency of co-occurrences of 
all AV pairs within an entity from all entities in R. Then, 
to evaluate the statistical significance of each AVA, the 
frequency of co-occurrences in AVAFM is converted to 

a statistical measure known as adjusted statistical resid-
ual (SR) [6] accounting the deviation of that frequency 
from its default model, that is, the frequency of co-
occurrences of the AV pairs is statistically independent, 
i.e., containing no correlated relation. Then, the new 
matrix is called AVA Statistical Residual Vector Space 
(SRV) each row of which represents an AV-vector with 
its coordinates representing the SR values of that AV 
associated with other AV’s represented by the column 
vectors. The next step of cPDD is applying principal 
component decomposition (PCD) to decompose the 
SRV into different principal components (PCs) and re-
project the projections of the AV-vectors on each PC 
to a new SRV, referred to as Re-projected SRV (RSRV). 
The AV-vectors with a new set of coordinates in the 
RSRV reflect the SR of AVAs captured by that PC. The 
PC and its RSRV together refer to an AVA Disentan-
gled Space (DS). Since the number of DSs is as large 
as the number of AVs, cPDD only select a small set of 
DSs denoted by DS* = { DS∗i  } if the maximum SR in the 
RSRV of that DS exceeds a set statistical threshold (e.g., 
1.44 in 85% confidence interval). As the AVs sharing 
statistically significant AVAs will form Attribute-Value 
Clusters (AV-Clusters) in a PC reflecting a group of 
strongly associating AVs. An AV Cluster is defined as a 
set of AVs such that each of which is associated with an 
AV of the other attribute in the cluster.

In traditional pattern discovery, to discover high-
order patterns from the AVs of a dataset is complex 
since there is an exponential number of combinations 
of AVs as pattern candidates. cPDD discovers patterns 
from each of the small number of AV-Clusters from a 
small set DS*. Hence, it not only dramatically reduces 
the number of pattern candidates, but also separates 
patterns according to their orthogonal AVAs compo-
nents revealing orthogonal functional characteristic 
(AVAs) in AV clusters [9, 10] and in subgroups of dif-
ferent DS*. Since the AV-clusters are coming from a 
disentangled source, the set of patterns discovered 
therein are relatively small with no or least overlapping 
and “either-or” cases among their AVs. Thus, cPDD sig-
nificantly reduces the variance problem and relates pat-
terns to more specific targets/groups. Unlike traditional 
Pattern Discovery (PD) methods which often produce 
an overwhelming number of entangled patterns, cPDD 
renders a much smaller succinct set of patterns associ-
ating with specific functionality from the disentangled 
sources for easy and direct interpretation. Furthermore, 
due to the reduction of the pattern-to-target variance, 
the patterns discovered from an uncorrelated AVA 
source environment will enhance prediction and clas-
sification, particularly effectively for data with imbal-
anced classes.
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Machine learning on clinical data analysis
Today, deep learning (DL) and frequent pattern min-
ing are two commonly used methodologies for data 
analysis. However, in a more general healthcare set-
ting where data analytics is based predominantly on 
clinically recorded numeral and descriptive data, the 
relation between the input (in terms of inherent pat-
terns apart from the given class label) and the output 
(decision targets/classes) is not that obvious, particu-
larly when the correlation of signs, symptoms, and 
test results of the patients could be the manifestation 
of multiple factors [2, 11]. Hence, this poses a chal-
lenge to DL in clinical application. Another concern is 
on the transparency and the assured accuracy [2, 11]. 
As for transparency, DL is generally considered as a 
black box [12]. Although ML methods like ensemble 
algorithms, such as Boosted SVM for imbalanced data 
(BSI), or Random Forest are good at prediction, their 

classification results are highly opaque and difficult for 
the clinicians to interpret [1]. Hence, to render trans-
parency and interpretability, Decision Tree, Frequent 
Pattern Mining or Pattern Discovery were proposed. 
Since rules discovered by Decision Tree are guided 
by class labels, it is unlikely to discover class related 
AVAs between attributes when class labels are not 
available. Furthermore, as revealed in our recent work 
[7–9], AVAs discovered from relational data could be 
entangled due to multiple entwining functional char-
acteristics inherent in the source environments. The 
patterns discovered using existing frequent pattern 
mining approaches based on the likelihood, weight of 
evidence [6], support, confidence or statistical residuals 
[5, 6], may have overlapping or functionally entwined 
AVA patterns inherent in the acquired data leading to 
overwhelming pattern number and redundancy, mak-
ing explanation very difficult. Although extra pattern 

Fig. 1  Overview of cPDD for Interpretation and Prediction
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clustering, pruning and summarization algorithms [13, 
14] have been proposed and produced a smaller set of 
patterns/pattern clusters, yet the pattern entanglement 
problems have not been solved and the interpretation is 
not comprehensive and succinct.

The cPDD proposed in this paper has solved the fun-
damental pattern entanglement problem and met the 
clinical challenges posed above. It intends to provide 
clinicians with concise and robust clinical patterns dis-
covered from the disentangled sources. The patterns are 
presented in a more succinct and interpretable form to 
reveal diagnostic characteristics of the patients and pro-
vide statistical support for prediction. Due to its abil-
ity of pattern disentanglement, patterns from minority 
class can be discovered in AVA Statistic Spaces (RSRVs) 
orthogonal to those of the majority classes.

cPDD extends our recent work [9] on AVA disentan-
glement to the discovery of statistically significant high-
order patterns in AVA disentangled spaces. Its major 
contributions are three-fold.

	 i.	 The cPDD discovers and disentangles statistically 
significant high-order patterns to reveal the char-
acteristics of different functional subgroups and/or 
classes in clinical data.

	 ii.	 It provides an explicit pattern representation for 
interpreting the characteristics of the dataset

	iii.	 It uses the discovered patterns to classify entities in 
the dataset with high precision even when the class 
distributions are imbalanced.

Methods
In this section, we extend our previous work, Attrib-
ute-Value Association Discovery and Disentanglement 
Model (AVADD) [9, 10, 15], to cPDD to discover robust 
and succinct statistically significant high-order patterns 
and pattern clusters for interpreting and predicting clini-
cal data with imbalanced classes. Table 1 gives an abbre-
viation of terms and Fig. 1 provides a schematic overview 
of cPDD.

First, we denote the input data as R, which contains 
N attributes, denoted as A = { A1, A2, …AN }, and each 
attribute (An) is denoted as An =

{

A1
n,A

2
n, . . .A

In
n

}

 , where 
In represents the number of AVs of the nth attribute, 
An. The AVA for an AV pair ( Ai

n , A
j
n′ ) is represented as 

Ai
n ↔ A

j
n′ , which describes the association between “the 

ith value of the nth attribute” and “the jth value of the n’th 
attribute”. Then, cPDD is implemented in the following 
five steps.

1.	 Statistical Data Analysis: The measurement that we 
used here is the same as that used for high-order pat-

tern discovery [6] which uses a statistical method to 
evaluate the significance of the associations of an AV 
cluster. From here on, an AVA denotes an association 
between a pair of AVs (or called AV pair). First, the 
Frequency Matrix (FM) denoted by a T × T matrix of 
AVA relative frequencies between two AVs is con-
structed, where T is the total number distinct AVs in 
the table. Then the FM is turned into an Adjusted 
Statistical Residual Vector Space (SRV) to represent 
the statistical weights of all the AVA pairs obtained 
from R. The dimension of SRV is same as that of FM, 
and each item of SRV is denoted as a SR 

(
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j
n′

)

 , 
which represents the adjusted residual between two 
AVs 

(

Ai
n ↔ A

j
n′

)

 . The value of SR 
(
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j
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)

 is cal-
culated by Eq. (1)

where r
(
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 represents the standardized residual 
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Occ
(

Ai
n ↔ A

j
n′

)

 is the total number of co-occurrences 
for Ai

n and A
j.
n′

Exp
(

Ai
n ↔ A

j
n′

)

=
Occ

(

Ai
n

)

Occ
(

A
j

n′

)

M  is the expected fre-
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 represents the maximum likelihood esti-
mate of the variance of r
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Therefore, SRV is an T × T matrix representing an 
adjusted standard residual (SR) Space [6] where T 

(1)SR
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√
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.

Table 1  Notations and terminologies

AV Attribute Value

AVA Attribute Value Association

AV Cluster Attribute Value Cluster

SR Adjusted Statistical Residual for an AV pair

SRV AVA Adjusted Statistical Residual Vector Space

PCD Principal Component Decomposition

RSRV Re-projected SRV

DS Disentangled Space

DS* Selected Disentangled Space, the selected set
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represents the total number of distinct AVAs. Hence, 
SR accounts for the deviation of its observed frequency 
of occurrences against the expected frequency of occur-
rences if the AVs in the pair are statistically independ-
ent. Generally speaking, the significant associations can 
be selected according to the threshold obtained from the 
hypothesis test of statistically significant SR. For example, 
when the association’s SR > 1.44, it can be treated as posi-
tively significant with an 85% confidence level (SR > 1.28 
with 80% confidence level).

2.	 Acquisition of AVA Disentangled Spaces: For AVA 
disentanglement, Principal Component Decompo-
sition (PCD) is applied to decompose the SRV into 
N PCs, denoted as PC = { PC1, PC2, …PCk…PCN 
}, where PCk is a set of projections of the AV vec-
tors obtained from SRV after the PCD, and PCk = { 
PCk

(

Ai
n

)

| n = 1, 2, . . .N , i = 1, . . . In }. We then re-
project the projections of the AV-vectors captured in 
each PC to a new SRV with the same basis vectors 
and call it a Reprojected SRV (RSRV) corresponding 
to that PC. We then refer all the PCs and the their 
corresponding RSRVs = { RSRV1, RSRV2, …RSRVk, 

…RSRVN } as the AVA disentangled spaces (DSs) 
where RSRVk is the re-projected result on PCk via 
RSRVk = SRV ∙ PCk ∙ PCk

T. Similar to SRV, each RSRV 
is an I × I matrix, and each row of a RSRV corre-
sponding to an AV represents an AV-vector whose 
coordinates are the SR of that AV associating with 
other AVs represented by the column vectors in the 
RSRV. The coordinates of these AV vectors in the 
RSRV represent the SRs of the AVAs captured in the 
PCs. We refer to a PC with its RSRV as a Disentan-
gled Space (DS). Figure 2 shows a DS (PC and RSRV) 
obtained from the synthetic dataset.

3.	 Identification of functional sub-group (AV-Cluster): 
Since the number of DSs is as large as the number 
of AVs, we then devise a DS screening algorithm to 
select a small subset from DSs (denoted by DS*) such 
that the maximum SR in its RSRV exceeds a statisti-
cal threshold (say 1.44 at confidence level of 85%). In 
the PC and RSRV of each DS*, often only one or two 
disjoint AV clusters are found. Each cluster may con-
tain a few subgroups. Hence, the complexity of the 
PD process is greatly reduced. The criterion to form 
an AV cluster is that each AV in the cluster must be 

Fig. 2  An illustration of DS* with two AV clusters in the first PC (PC1) using synthetic data. As displayed in PC1, two distinct clusters far from the 
centre represent two strongly AVA groups corresponding to class 2 and class 3 with large eigenvalue. The SR of their corresponding AVA among the 
AV pairs in each cluster are shown by the yellow shaded cells in its corresponding Re-projected SRV (RSRV). This indicates that the AVAs of class 2 
and class 3 are disentangled and grouped in the first PC and its corresponding RSRV. The green shaded cells in RSRV denote AV pairs with negative 
statistical significance (i.e., very unlikely to occur)
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in a significant AVA with other AV in the cluster. In 
the RSRV (Fig.  2), the cells with yellow and green 
shade show the AV pairs with positive and negative 
statistical significance respectively.

4.	 Pattern Discovery: High-order patterns can be dis-
covered through identifying pattern candidates 
through an AV cluster identification and growing 
process. Formally, we denote a high-order pattern 
as Pj which consists of a subset of AVs with size ≥ 2. 
We use the adjusted residual [2] derived from the fre-
quency of co-occurrences of Pj used in the hypoth-
esis test to assess whether Pj is a statistically signifi-
cant pattern. In order to keep the discovered patterns 
non-redundant, we only accept delta-closed patterns 
[16, 17] in the pattern discovery process. There might 
be more than one pattern identified in the AV cluster. 
We treat the union of the AVs making up patterns in 
one AV cluster or in one functional sub-group as the 
summarized super pattern. All patterns discovered 
by cPDD are listed as the comprehensive patterns.

5.	 Interpretation and Prediction: The AVs in each 
AV cluster/subgroup making up a summarized pat-
tern pertaining to a designated class/group. In all 
our experiments, due to AVA disentanglement, the 
summarized patterns contain no or very few “either-
or AVs” within the pattern. Hence, the summarized 
pattern is more succinct and easier to interpret. 
The high-order patterns in the comprehensive set 
can provide all the detailed patterns for interpreta-
tion and linkage to individuals and groups. Since the 
number of candidate AVs are few in the output of 
cPDD, so the number of patterns discovered in each 
DS* is extremely small. This is significantly different 
from traditional PD. For class prediction when class 
labels are given, we can discover the disentangled 
patterns associating with class labels from the train-
ing data. In testing, we apply the discovered summa-
rized patterns associated with each specific class to 
predict whether the entity for testing belongs to that 
class. Let (Pj, C) represents a summarized pattern 
Pj associated with class label C, and Ei represent the 
entity needed to be predicted. Based on the mutual 
information in statistical information theory, we can 
use the weight of evidence [18, 19] of all the AVs in 
the summarized patterns to determine whether the 
class label for Ei, C(Ei), will have higher weight than 
predicting it as pertaining to other classes.

Results and discussion
In this study, we conducted experiments both on the 
synthetic and the clinical dataset with imbalanced 
classes.

Materials
Dataset 1: synthetic dataset
To show the capability of cPDD in interpreting an 
imbalance dataset, a synthetic experiment was designed 
and conducted. We generated stochastically a 2100 × 10 
matrix with the first column as the class label and oth-
ers as attributes with character values stochastically 
generated from a uniform distribution. This represents 
a random relational dataset with attributes independ-
ent to each other. We then embedded patterns of three 
different classes C1, C2, and C3 for the first 6 attributes. 
We use A1A, A2C, for example, to respectively repre-
sent character value A and C for Attribute A1 and A2. 
The patterns implanted in the data are summarized in 
Table  2. Note that A1A and A2C are entangled (over-
lapping) for C1 and C2; A3H and A4M are entangled in 
C1 and C3; A5B and A6J are entangled in C2 and C3. For 
the last three attributes, we put in randomly selected 
characters from {“O”, “P”, “Q”} and for the 10th attribute 
we randomly embedded characters used for the three 
classes. Moreover, this synthetic Dataset was imple-
mented as one with imbalanced class distribution with 
1000 entities pertaining to C2 and C3 each, and 100 
entities pertaining to C1.

Dataset 2: thoracic dataset
The thoracic dataset describes the surgical risk origi-
nally collected at Wroclaw Thoracic Surgery Centre 
for patients who underwent major lung resections for 
primary lung cancer in the years 2007-2011 [20]. The 
attributes included are given in Fig. 3. This public data-
set is provided after feature selection and elimination 
of missing values. It is composed of 470 samples with 
16 pre-operative attributes after feature selection. The 
target attribute (class label) is Risk. Risk = T if the 
patient died. In this dataset, the class distribution is 

Table 2  Synthetic dataset with  embedded entangled 
patterns

Classes Attribute Values are 
Significant Associated 
with Class Label

C1 A1A, A2C, A3H, A4M/N, A5A, A6F

C2 A1A, A2C/D, A3G, A4N, A5B, A6J

C3 A1B, A2D, A3H, A4M, A5B, A6F/J
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imbalanced with 70 cases being Risk = T and 400 cases 
being Risk = F. To simulate the target scenario without 
requiring much tweaking, the numeric attributes PRE4, 
PRE5 and age were removed.

Analysis I – discovery and display of explicit patterns 
for explanation
In Analysis I, we compared the discovered patterns 
obtained in cPDD, Apriori [21] (a typical frequent pat-
tern mining method) and a high-order pattern discovery 
method for discrete-value data (HOPD) [6] which was 
our early work closely resembling the PD reported in [9, 
10]. Figures 4 and 5 show the pattern discovery result of 
cPDD on the Synthetic and Thoracic data respectively. 
Figure 6 presents the comparison results of all these three 
methods.

As shown in Fig. 4, a small set of AV-Clusters was dis-
covered from the synthetic dataset. Figure  4a displays 
the union of all the comprehensive patterns (Fig.  4b) 
and can be considered as the summarized pattern. The 
summarized pattern in each subgroup of a DS* con-
sists the union of all the detailed patterns discovered in 
that subgroup of the DS*. While the summarized pat-
tern gives a high-level interpretation of the AVs with 
significant AVAs in a subgroup, the detailed patterns 
encompass comprehensively all the significant patterns 
discovered in that subgroup with details and statisti-
cal support. In the like manner, the summarized pat-
terns discovered form the Thoracic dataset are given in 
Fig. 5a and some samples of comprehensive set of pat-
terns that are associated with class labels are displayed 
in Fig. 5b.

Fig. 3  Attribute Description of Thoracic Dataset



Page 8 of 15Zhou and Wong ﻿BMC Med Inform Decis Mak           (2021) 21:16 

Figure 6 displayed the PD results obtained from cPDD 
and Apriori with two different fine-tuned sets of sup-
port and confidence on the synthetic dataset (Fig.  6a) 
and the Thoracic dataset (Fig.  6b). While cPDD discov-
ers 4 summarized patterns and 9 detailed patterns from 
the synthetic dataset, the number of patterns discovered 
by Apriori and HOPD are overwhelming. For the tho-
racic dataset, similar comparative results for are shown 
in Fig. 6.

Furthermore, when comparing the implanted pat-
terns with the patterns cPDD discovered (Fig. 4c), cPDD 
reveals all patterns with correct class labels in disentan-
gled spaces except one in P2 as it has (A2D, A3G, A5B, 
A6J). Although this pattern is the same as the implanted 
patterns, yet it shares the sub-pattern (A2D, A5B, A6J) 
of P3 in C3 indicating the entanglement in the original 
data. Figure  4c shows high SR for the implanted pat-
terns assigned with the correct classes and low SR for 
the entangled cases. For both Apriori or HOPD, they 

Fig. 4  cPDD Pattern Discovery Result from Synthetic Dataset. a In the First and the Second DS* (DS 1 and DS 2) two AV-clusters were discovered. 
b Detailed Patterns associated with different classes were discovered from the above two AV-Clusters. c Implanted patterns showing close 
correspondence to the patterns obtained in cPDD’s output in (a) and (b)
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discovered a large number of patterns where most of 
them are redundant and overlapping. While some of 
them are associated with class labels, others are with the 
noise columns A7, A8 and A9 as well.

In addition, from the pattern discovery result on the 
Thoracic dataset, we observed similar phenomena if we 
replace Figs.  4 and 6a with Figs.  5 and 6b respectively. 
Figure 5a gives four AV-Clusters, two in each AVA disen-
tangled Space (DS1 and DS2). Each AV-cluster contains 
the interpretable union of all the patterns discovered in 
different subgroups (Fig.  5a). A subset of the detailed 

patterns forming each union pattern is displayed in 
Fig. 5b.

Figure 6b shows the comparison results for the Tho-
racic data. First, the number of patterns obtained by 
Apriori and HOPD are both large. And it is difficult to 
interpret the pattern outcomes relevant to the prob-
lem when the number of patterns is large with consid-
erable redundant and overlapping patterns. Second, 
Apriori outputs the patterns from datasets only if the 
class labels are given. HOPD can output all the patterns 
discovered among the growing set of the candidate 

Fig. 5  Pattern Discovery Result of Thoracic Dataset using cPDD a In both First and the Second Disentangled Space, two AV Clusters corresponding 
to Risk = T and RISK=F were discovered b Detailed Patterns discovered from the above two AV Clusters. Note that no AV of attributes PRE17, PRE19 
and PRE32 are associated with any significant patterns. They were dismissed autonomously without undergoing feature engineering
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patterns without knowing class labels, but the number 
of high order patterns produced are overwhelming. For 
a dataset R with m attributes, there are an exponential 
number of AV combinations being considered as pat-
tern candidates. So, the number of patterns outputted 
by HOPD is huge. It is surprising to note that the high-
est order of patterns discovered for Thoracic Dataset by 
cPDD is 8 (Fig.  5b), yet the number of comprehensive 
patterns discovered is only 36 (Fig.  6b). This is really 
beyond what humans can grasp.

When we examined whether other algorithms could 
discover the patterns associated with the minority class, 
we found that the results of Apriori depend on the set 
value of the threshold, support, and confidence. When 
the threshold is low, more patterns are discovered which 
may cover those in the minority class, but the number of 
patterns is huge (Fig. 6b). When the set threshold was set 
high, patterns in the rare class were not discovered. As 
for HOPD, it discovered a large number of patterns that 
contain those of the rare classes. However, cPDD discov-
ered a much smaller number of summarized and detailed 
patterns succinctly, including those from the rare class.

In summary, this experimental result shows that cPDD 
is able to discover fewer patterns with specific association 
to the classes in support of easy and feasible interpreta-
tion. Furthermore, even with few patterns, it is able to 
represent succinct, comprehensive (as exemplified in the 
synthetic case) and statistical/functional characteristics 

of all classes given, even when the class distribution is 
imbalanced. With the capability to render direct inter-
pretation of a small, succinct and reliable set of patterns 
discovered from distinct sources without the reliance of 
explicit a priori knowledge and a posteriori processing, 
cPDD is a novel approach of Explainable AI (XAI) [22, 
23] quite different from the existing model-based ML 
approach.

Analysis II – prediction on imbalanced dataset
In Analysis II, we focus on the prediction of diagnostic 
outcomes of the Thoracic dataset with imbalance class 
distribution. We first report the testing results on the 
original thoracic dataset, then we cover the extended 
experiment results with sampling data.

Comparison result on original data
For the imbalanced class problem, since the correct pre-
diction of the majority classes will overwhelm that of the 
minority classes, the prediction performance should not 
be evaluated based on the average accuracy [24]. Hence, 
in this study, the prediction results are evaluated by the 
F1-Score [25] calculated by Precision and Recall (or 
called sensitivity and specificity), Geometric mean of 
Precision and Recall (G-mean) [1] respectively for pre-
dicting the minority target.

Fig. 6  a Comparison of Pattern Discovery Result on Synthetic Dataset b Comparison of Pattern Discovery Result on Thoracic Dataset. The number 
of patterns discovered by cPDD is drastically reduced to enable succinct interpretation and the construction of a useful knowledge base
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The F1-Score for the minority class Cm, denoted as 
F1(Cm), can be calculated from the Precision (Cm) and the 
Recall (Cm) by Eq. (2).

where Precision (Cm) = TP
(TP+FP) , Recall (Cm) = TP

(TP+FN )
 , 

TP represents True Positive; FP represents False Positive, 
and FN represents False Negative when considering the 
minority class label as the target. Thus, according to the 
definition, F1-score = 0 if the number of true positive 
TP = 0.

The G-mean for the minority class, denoted as 
G-mean(Cm), is calculated from the Precision  (Cm) and 
the Recall (Cm) by Eq. (3).

We do not show the comparison result of the Precision 
or Recall of minority class since for the imbalanced data 
problem, if all the cases are detected as majority class 
target or minority class target, they may have extremely 
high precision or recall. Hence, the average F1-score 
or G-mean calculated by both Precision and Recall are 
obtained from 20-time-10-fold cross-validation used for 
performance evaluation.

Besides, considering both majority and minority deci-
sion in the comparison result, we list the average accu-
racy to show how misleading these results could be as 
they are unreliable measures for classification perfor-
mance evaluation for the case with imbalanced classes. 
Compared to Accuracy and F1 score, MCC renders a 
more reliable statistical rate which produces a high score 
only if the prediction obtained good results in all of the 
four confusion matrix categories (TF, FN, TN and FP) 
[26]. The value of MCC is from − 1 to + 1, where + 1 rep-
resents a perfect prediction, 0 an average random predic-
tion and − 1 an inverse prediction. Hence, wwe also list 
the Matthews correlation coefficient (MCC) [26] (Eq. (4)) 
and Balanced Accuracy (Balance Acc.) [27] to show the 
accuracy after the balanced results are obtained.

In this study, cPDD was compared with Logistic 
Regression (LR), Naïve Bayes (NB), and Decision Tree 
(CART). All of the above algorithms were implemented 
under default parameters using the Python machine 
learning package, scikit-learn 0.23.2 [28]. The compari-
son results are given in Table 3 and Fig. 7. All results are 
listed as mean ± variance.

(2)F1(Cm) =
2 ∗ Recall (Cm) ∗ Precision(Cm)

Recall (Cm)+ Precision(Cm)

(3)
G −mean(Cm) =

√

Recall (Cm) ∗ Precision(Cm)

(4)

MCC =
TP
N −S∗P√

PS(1−S)(1−P)

where N = TN + TP+ FN + FP, S = TP+FN
N

, P = TP+FP
N

In Table  3, LR shows poor prediction performance, 
resulting in 0.01 ± 0.00 on F1-Score and 0.01 ± 0.01 on 
G-mean. CART achieved a slightly better performance 
on F1-Score with 0.19 ± 0.03 and on G-mean with 
0.20 ± 0.03 since the weighted samples were used for 
optimizing CART [28]. Naive Bayes was less influenced 
as the target proportion could be used as the prior infor-
mation in training. Finally, we found that cPDD achieved 
the best performance on F1-Score with 0.33 ± 0.01 and 
G-means with 0.38 ± 0.01. In addition, for this set of 
imbalanced data, Balance Acc. would be better than reg-
ular accuracy [27]. Without sampling, both LR and NB 
shows the balanced accuracy as 0.5 which is same with 
randomly selection, even though NB shows better perfor-
mance of classification for minority class.

Similarly, as Table  3 shows, CART obtained a slightly 
higher value on Balanced Acc and MCC. However, cPDD 
obtained the highest results for both Balanced Acc. with 
0.62 + =0.01 and MCC with 0.18 + =0.01, as well as all 
the other scores except for Avg. Acc. which is not that 
meaningful for the imbalance cases.

In summary, cPDD has achieved the best result no 
matter whether it is applying on the entire dataset or only 
on the minority classes. This indicates that cPDD is more 
robust and reliable.

Comparison result on sampling data
To reduce the inaccuracy of such kind of biased classifi-
cation, researchers usually use undersampling and over-
sampling methods to balance the samples of the training 
data [29]. Therefore, both random oversampling [30] and 
random undersampling [31] have been applied to the 
dataset before training and predicting.

Random oversampling  Random oversampling [30] 
duplicates records randomly from the minority class and 
adds them to the training dataset. However, oversam-
pling may result in overfitting towards the minority class 

Table 3  Comparison result from  20-time-10-fold cross-
validation using different classification algorithm

F1-Score(T) Average F1-Score on Risk = T, G-means(T) Average G-mean on 
Risk = T, Avg. F1 Average F1-Score for both classes (Risk = T and Risk = F), Avg. Acc 
Average of prediction accuracy on the whole dataset

Original 
Thoracic Data

LR CART​ NB cPDD

F1-Score(T) 0.01 ± 0.00 0.19 ± 0.03 0.24 ± 0.01 0.33 ± 0.01

G-mean(T) 0.01 ± 0.01 0.20 ± 0.03 0.36 ± 0.01 0.38 ± 0.01

Avg. F1 0.01 ± 0.01 0.19 ± 0.03 0.24 ± 0.01 0.33 ± 0.01

Avg. Acc 0.84 ± 0.84 0.82 ± 0.01 0.15 ± 0.00 0.59 ± 0.01

Balanced Acc. 0.50 ± 0.00 0.54 ± 0.01 0.50 ± 0.00 0.62 ± 0.01

MCC −0.01 ± 0.00 0.11 ± 0.03 0.01 ± 0.00 0.18 ± 0.01
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samples especially for higher over-sampling rates [29, 
32]. To implement the random oversampling algorithm, 
we used the imbalanced-learn Python library [33].

In this experiment, we separated the training data and 
testing data first, and then applied random oversampling 
on the training data. The original training dataset would 
include 423 records with ~ 63 records taken from the 
minority class and ~ 360 from the majority class. After 
applying the above random oversampling method, the 
number of training records was increased to 720. To keep 
consistent with experiments on original data, we used the 

original 47 test samples (10% of the original entire set) 
with imbalanced classes as the test set. We then applied 
all classification methods for training and testing on this 
set of data. Since we have shown that the average accu-
racy should not be used as a reasonable approach for 
prediction evaluation for imbalanced dataset, we listed in 
Table 4 only the average F1-score and G-mean for minor-
ity class and the average F1-score for the entire dataset.

As the results show, cPDD still achieved superior pre-
diction results, since it can handle imbalanced dataset 
effectively. The oversampling strategy did not change the 
result too much for cPDD as its F1-score and G-mean 
increased respectively to (0.37 ± 0.01) and (0.40 ± 0.01) 
from (0.33 ± 0.01) and (0.38 ± 0.01) in Table  3. Simi-
larly, both CART and NB would be less influenced by 
imbalanced data as the results only slightly increased 
with F1-Score 0.20 ± 0.02 and G-mean 0.22 ± 0.22 for 
CART, and almost kept the same for NB with F1-Score 
0.26 ± 0.01 and G-mean 0.36 ± 0.00. However, since 
Logistic Regression is not designed for imbalanced data-
sets, so after oversampling, the dataset became a bal-
anced dataset, and the performance of LR improved 
considerably with F1-score (0.31 ± 0.02) and G-mean 
(0.34 ± 0.02) for the minority class.

Random undersampling  Similar to the random over-
sampling, random undersampling [31] randomly deletes 
records from the majority class. The process is repeated 
until the training dataset becomes a balanced dataset. 
The same Python library [33] was used for implementa-
tion. And the average F1-Score, G-mean for minority 

Fig. 7  Comparison Result from 20-time-10-fold cross-validation on Thoracic Dataset

Table 4  Comparison result from  20-time-10-fold 
cross validation with different sampling strategies

F1-Score(T) Average testing F1-Score on Risk = T, G-means(T) Average testing 
G-mean on Risk = T, Avg. F1 Average testing F1-Score for both classes (Risk = T 
and Risk = F)

LR CART​ NB cPDD

Over Sampling

  F1-Score(T) 0.31 ± 0.02 0.20 ± 0.02 0.26 ± 0.01 0.37 ± 0.01

  G-mean(T) 0.34 ± 0.02 0.22 ± 0.22 0.36 ± 0.00 0.40 ± 0.01

  Avg. F1 0.31 ± 0.02 0.20 ± 0.20 0.26 ± 0.01 0.59 ± 0.01

  Balanced Acc. 0.61 ± 0.01 0.52 ± 0.01 0.50 ± 0.00 0.61 ± 0.01

  MCC 0.17 ± 0.03 0.04 ± 0.02 0.01 ± 0.00 0.25 ± 0.01

Under Sampling

  F1-Score(T) 0.30 ± 0.01 0.27 ± 0.02 0.25 ± 0.01 0.34 ± 0.02

  G-mean(T) 0.34 ± 0.01 0.30 ± 0.02 0.35 ± 0.02 0.41 ± 0.03

  Avg. F1 0.30 ± 0.01 0.27 ± 0.02 0.25 ± 0.01 0.63 ± 0.02

  Balanced Acc. 0.59 ± 0.01 0.57 ± 0.01 0.54 ± 0.01 0.61 ± 0.02

  MCC 0.13 ± 0.02 0.11 ± 0.02 0.08 ± 0.02 0.20 ± 0.08
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class and the average F1-Score, MCC and Balance Acc. 
for the entire testing data were used for evaluation.

In this experiment, after applying the random under-
sampling algorithm, the number of training dataset (423 
records) was reduced to 126 since the size of majority 
class was reduced. Then the same classification methods 
were applied to the same testing dataset.

As Table  4 shows, cPDD still achieved superior predic-
tion results with F1-score (0.34 ± 0.02) and G-mean 
(0.41 ± 0.02). The results were also improved for CART 
with F1-Score in 0.27 ± 0.02 and G-mean in 0.30 ± 0.02 
whereas the results of NB were least influenced by under-
sampling with F1-Score in 0.25 ± 0.01 and G-mean in 
0.31 ± 0.02 while those of Logistic Regression improved 
with F1-score (0.30 ± 0.01) and G-mean (0.34 ± 0.01) for 
the minority class.

Besides, the comparison plots of F1-Score and G-mean 
are shown in Fig. 8. As the Fig. 8 shows, both cPDD and 
NB were less influenced by imbalanced data because both 
of them are “probabilistic classifiers” using statistical the-
ory. cPDD could achieve better performance because it 
can discover even the hidden patterns. Logistic Regres-
sion cannot handle imbalanced data, so after samplings, 
the performance of LR improved considerably. Compar-
ing between different sampling strategies, we found that 
CART could achieve better results when undersampling 
strategy was applied, and LR could obtain better results 
when oversampling strategy was applied.

In summary, without sampling, cPDD showed robust 
prediction performance in comparison with all other 
methods. And for all sampling strategies, cPDD still 
performed best. Thus, no matter whether the data is 

balanced or imbalanced, cPDD can handle it robustly and 
steadily.

Conclusion
As a pattern discovery method on imbalanced synthetic 
and Thoracic data, cPDD renders a much smaller suc-
cinct set of explicit class-associated patterns for bet-
ter interpretation, and superior prediction since it uses 
disentangled patterns which are more specific and dis-
tinct to the classes. The results it obtains are statistically 
robust with comprehensive coverage of succinct, con-
cise, precise, displayable and less redundant representa-
tions for experts’ interpretation. cPDD also overcomes 
the limitations of lack of transparency [11] as well as the 
problem of imbalanced class [2, 3, 11, 34]. As a clinical 
data analysis tool on relational data, it has a significant 
advantage over the ‘black box’ ML algorithms since its 
output of is both transparent and interpretable, the two 
major challenges of interpretability and applicability [22] 
confronting ML on relational data today. The experimen-
tal result on synthetic and clinical data with high imbal-
anced class ratios shows that cPDD does have a superior 
prediction and interpretability performance for minority 
targets. cPDD brings explainable AI to clinical experts 
to enhance their insight and understanding with statisti-
cal and rational accountability. Hence, it will have great 
potential to enhance ML and Explainable AI [22, 23].

In our future work, cPDD will be developed to apply 
to unstructured data (e.g., text and sequences) [7, 35] by 
extracting patterns directly from them as shown in our 
early work [36]. Moreover, for performance improve-
ment, parallel computing strategy will be introduced to 
handle bigger data and further speed up the computa-
tional time.

Fig. 8  Comparison Results from 20-time-10-fold cross validation on Risk = T with different sampling strategies. a Comparison of average testing 
F1-Score Using Various Classification Algorithms b Comparison of average testing G-mean Using Various Classification Algorithms
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