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Abstract

Background: Deep learning based on segmentation models have been gradually applied in biomedical images and
achieved state-of-the-art performance for 3D biomedical segmentation. However, most of existing biomedical
segmentation researches take account of the application cases with adapting a single type of medical images from the
corresponding examining method. Considering of practical clinic application of the radiology examination for diseases,
the multiple image examination methods are normally required for final diagnosis especially in some severe diseases
like cancers. Therefore, by considering the cases of employing multi-modal images and exploring the effective multi-
modality fusion based on deep networks, we do the research to make full use of complementary information of multi-
modal images referring to the clinic experiences of radiologists in image analysis.

Methods: Referring to the human radiologist diagnosis experience, we discuss and propose a new self-attention aware
mechanism to improve the segmentation performance by paying the different attention on different modal images
and different symptoms. Firstly, we propose a multi-path encoder and decoder deep network for 3D biomedical
segmentation. Secondly, to leverage the complementary information among different modalities, we introduce a
structure of attention mechanism called the Multi-Modality Self-Attention Aware (MMSA) convolution. Multi-modal
images we used in the paper are different modalities of MR scanning images, which are input into the network
separately. Then self-attention weight fusion of multi-modal features is performed with our proposed MMSA, which
can adaptively adjust the fusion weights according to the learned contribution degree of different modalities and
different features revealing the different symptoms from the labeled data.

Results: Experiments have been done on the public competition dataset BRATS-2015. The results show that our
proposed method achieves dice scores of 0.8726, 06563, 0.8313 for the whole tumor, the tumor core and the enhancing
tumor core, respectively. Comparing with the U-Net with SE block, the scores are increased by 0.0212,0.031,0.0304.

Conclusions: We present a multi-modality self-attention aware convolution, which have better segmentation results
based on the adaptive weighting fusion mechanism with exploiting the multiple medical image modalities. Experimental
results demonstrate the effectiveness of our method and prominent application in the multi-modality fusion based
medical image analysis.
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Background

Medical image segmentation is one of the most common
areas of applying deep learning into the medical image
analysis. Meanwhile, semantic segmentation is usually
under the request to do the automatic partition of the in-
teresting areas such as organs and lesions, which will be
applied in the assistant diagnosis [1], the tissue-specific
measurement [2], the three-dimensional reconstruction
[3], and the visual enhancement [4].

Traditional image segmentation methods include
threshold-based [5], deformable surface modal based [6],
active surface modal based [7], etc. The performance of
these methods is limited, for the reason of similarity
between interested areas and surroundings. Moreover,
determining interested areas usually strongly depends on
handcrafted features that suffer from the limited feature
representation ability [8]. Deep learning is constantly
creating new achievements in computer vision and
pattern recognition. In some tasks of natural image clas-
sification, the performance of deep learning based on ap-
proaches even surpasses that of the human judgment
[9]. The achieved good performances of state-of-the-art
deep learning techniques are mainly attributed to the
ability of the convolutional neural network (CNN) to
learn the hierarchical representation of images, so that it
does not depend on the handcrafted features and over-
comes the limitation of handcrafted features in revealing
the characteristics of complex objects [10]. The strong
feature learning ability of CNN opens up a new direction
for medical image segmentation. CNN is typically used
for classification, and the output of images is mostly only
the category labels. In the task of medical image seg-
mentation, the desired output should include location,
that is, the classification of each pixel is necessary.
Patch-based method [11-13] determines the class of
each pixel by predicting the label of the local area
around each pixel (by using sliding window method),
However, the training of this method is very slow and it
is difficult to determine the most appropriate size of the
local area. The larger area will affect the accuracy, while
the smaller area is difficult to consider the context infor-
mation. Fully convolution networks (FCNs) [14] solves
these two problems efficiently and elegantly. Unlike
classical CNN, which uses fully connection layer to get
fixed-length vectors after the convolution layer for
classification, FCN uses deconvolution to up-sample the
feature map and restore it to the same size as the input
image, thus each pixel can be predicted. On this basis,
U-Net [15] designs the network structure consisting of
an encoder path that contains multiple convolutions for
down sampling, and a decoder path that has several
deconvolution layers to up-sample the feature. Further-
more, it combines high-resolution features with up-
sampled features by using skip connection to improve
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positioning accuracy. This encoder-decoder structure
has also become the basic structure of many segmen-
tation method,including segmentation of 3D medical
images that can make better use of depth information
[16-19]. However, due to the indistinguishability of
interested areas in tissues, for example, the tumors
with the surrounding normal tissues, it is still a big
challenge to establish effective methods for medical
image semantic segmentation.

Referring to the clinic diagnosis experience of radiolo-
gists, the diagnosis report is made based on synthesizing
multiple-perspective clues from the multiple medical im-
aging methods. For example, four different modes of
MRI (Magnetic Resonance Imaging) images are used in
brain tumor surgery: T1 (spin-lattice relaxation), Tlc
(T1-contrasted), T2 (spin-spin relaxation), and Flair
(fluid attenuation inversion recovery). Enhancing and
non-enhancing structures are segmented by evaluating
the hyper-intensities in T1C. T2 highlights the edema
and Flair is used to cross-check the extension of the
edema. Each modality has distinct responses for different
sub regions of gliomas. The final diagnosis is usually
determined by multiple modalities. Because the informa-
tion provided by single modal images is very limited, it
is difficult to meet the high-precision clinical needs.
Multi-modal images provide more information about
the patient’s lesion and its surrounding areas, and the in-
formation of different modalities is complementary each
other in revealing the lesion characteristics from differ-
ent perspectives. How to make good use of these
complementary information has become a direction to
improve the accuracy of segmentation. Existing methods
often treat modalities as different channels in the input
data [20, 21]. However, the correlations between them
are not well utilized. To draw inspiration from the recent
success of SKNet [22] and understanding of clinic diagno-
sis experience, we propose a multi-modality self-attention
aware deep network for 3D biomedical segmentation. By
using Multi-Modality Self-Attention Aware convolution
to realize the self-weighted fusion of multi-modal data, it
achieves state-of-the-art performance for multi-modal
brain tumor segmentation.

Methods

Multi-path encoder and decoder

To realize processing of multi-modal 3D medical images,
we explore to construct a multi-path input 3D segmen-
tation network. The network adopted in the paper is the
encoder and decoder structure similar to U-Net as
shown in Fig. 1. Here, the encoder is used to extract the
deep representation of each modality of medical image,
while the decoder is used to up-sample the learned fea-
ture map at each level and restore feature at the last
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Fig. 1 Comparisons of encoder and decoder structures
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level to the original resolution for the pixel-wise region
and semantic label prediction.

To deal with the multi-modal data at the encoder end,
there are usually two solution: single-path with concat-
enating the multi~-model image at the data-level and
multi-path with concatenating the multi-modal image at
the feature level. The structure of two fusion methods as
illustrated in Fig. 1. Because the multi-path structure fa-
cilitates the processing of information from each modal
separately, we take the multi-path as the base structure
of the encoder.

More specifically, at the encoder end, we adopt a
ResNet [23] as backbone network which consists of one
input layer and four down-sampling layers. 3D convolu-
tion of the kernel size 3x 3 and 7 x 7 is used for input
and down-sampling layers respectively.

The structure of the decoder corresponds to the en-
coder, which includes four up-sampling layers and one
output layer. For up-sampling layers, each 3D Transpose
convolution with kernel size 3 x 3 is used to up-sampling
feature map, and combines with the corresponding high-
resolution features. All convolutions above are further
applied by an element-wise rectified-linear non-linearity
(ReLU). After up-sampling the feature maps to the ori-
ginal resolution, 1 x 1 convolution is used to produce the
class probabilities of each pixel.

Referring to the experience of radiologists in clinical
diagnosis based on overall consideration of significant
symptoms reflecting on certain multiple modal images,
we discuss an attention mechanism to improve the seg-
mentation performance by paying the different attention
on different features and different modal images. A new
self-attention aware mechanism is proposed and illus-
trated in the following section.

Multi-modality self-attention aware convolution
Recently, attention mechanism is used for a series of tasks
[24, 25], it biases the allocation of the most informative

feature expressions and simultaneously suppresses the less
useful ones. Furthermore, SENet [26] brings a gating mech-
anism to self-recalibrate the feature map via channel-wise
importance. Then on the base of these, SKNet was pro-
posed to focus on the adaptive local receptive fields size of
neurons sizes. Similarly, we propose the Multi-Modality
Self-Attention Aware Convolution to fuse multi-modal
features, which can adaptively adjust the fusion weights ac-
cording to the contribution degree of different modalities
(see Fig. 2).

For the obtained multi-modal features U, €
€, we first fuse them via an element-wise summation to
integrate information:

v=>"u, (1)

where W, H, D are feature dimensions, C is the number
of channels and m is modality in M (all modalities).

Then we shrink each feature map on the channel by
3D global average pooling to generate channel-wise sta-
tistics as z € R, Specifically, the c-th element of z is cal-
culated as:

1 w H D L
e = Follle) = 3 i p 2aims 21 2ana Ui/ K)
2)

To realize the adaptive weighting of the multi-modal
feature map, M full-connection layers are used to gener-
ate M weighting parameters we R under the guidance
of feature descriptor z. Specifically, a SoftMax operator
is applied on the channel-wise digits to adaptively select
different modality of information:

RWxHxDx

& M,
W= i 2 =1 G
m

The final feature map UJeRY>**P*C s obtained
through the attention weights between multi-modal:
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The system overview of our method shows in Fig. 3.

Results

Dataset and data preprocessing

The Dataset for this study comes from BRATS-2015
[27]. The training set consists of 220 patients with high
grade gliomas and 54 subjects with low grade gliomas.
The testing set contains images of 110 patients. Each pa-
tient was scanned with four sequences: T1, T1c, T2, and
FLAIR. The size of each MRI image is 155 x 240 x 240.

All of the images were skull-striped and re-sampled to
an isotropic 1 mm3 resolution, and four sequences of
the same patient had been co-registered. All ground
truth annotations were carefully prepared under the
supervision of expert radiologists. The ground truth
contains five labels: non-tumor, necrosis, edema, non-
enhancing tumor and enhancing tumor. Because the ori-
ginal testing set is without ground truth, we split the
training data into two parts: 195 high grade gliomas and
49 low grade gliomas for training, and the rest 30 sub-
jects for testing. For data preprocessing, we first extract
the region of interest area from the original image to
prevent the model from focusing on zero regions and

Multi-Modality Self- Attention
Aware Convolution

= e o o 1

D Input layer |

: [ 0own-sampling layer I

Multi-Modality Self-Attention
Aware Convolution

] |
| - Up-sampling layer |
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e -
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Fig. 3 Multi-Modality Self-Attention Aware Deep Network

Prediction
results

Decoder




Jia et al. BMC Medical Informatics and Decision Making 2020, 20(Suppl 3):119 Page 5 of 7
Table 1 Comparison of segmentation results between single and multi-path encoder

Dice Sensitivity Positive Predicted Value

WT TC ET WT TC ET WT TC ET
Single 0.8135 0.5900 0.7687 0.8451 06732 0.8003 0.8651 06751 08164
Multi (unshared) 0.7912 0.5338 0.6833 0.7999 0.6557 0.7591 0.8635 05723 0.7395
Multi (shared) 0.8063 0.5777 0.7503 08414 06192 0.7951 0.8557 0.6007 0.7820

getting trapped into a local minimum. Then we resize a
volume to 144 x 144 for each axial plane and normalize
the intensity of a volume based on the mean and stand-
ard error (std).

The evaluation was done for three different tumor
sub-compartments:

e Enhancing Tumor (ET): it only takes the active
tumor region (label 4 for high-grade only)

e Whole Tumor (WT): it considers all tumor areas
(labels 1, 2, 3, 4)

e Tumor Core (TC): it considers tumor core region
without necrosis (labels 1, 3, 4)

Training set

The training patch size was 144 x 144 x 16 which means
that we put 16 slices of volume into the network at a
time. Our networks were implemented in Pytorch. We
use stochastic gradient descent (SGD) optimizer for
training, with the initial learning rate is 10e-3, momen-
tum 0.9, weight decay 5 x 107%, batch size 1 and maximal
iteration 400. Network parameters are initialized by
kaiming initialization. The Cross-Entropy loss plus Dice
loss is used for training.

Evaluation criteria
There are three kinds of Metrics in biomedical segmen-
tation: Dice, Sensitivity, and Positive Predicted Value.

. 2xTP

Dice = (5)
(2«TP + FP + FN)

P
S itvity — — - 6
ensitivity TP + EN (6)

P

Positive Predicted Value = ——— 7
ositive Predicted Value TP + ED (7)

where TP, TN, FP, FN are meant as true positives, true
negatives, false positives, and false negatives. Dice (Dice

Table 2 Segmentation result of two attention mechanisms

Similarity Index) is a measure of how similar both pre-
diction and ground truth are. A high Sensitivity implies
the most lesions were segmented successfully. Positive
Predicted Value indicates the capability of a test to de-
tect the presence of disease.

Experimental results

In Table 1, we compare the performance of single-path
with multi-path encoder by using a simple structure
(shown in Fig. 1) on the testing set. The results show
that the single-path encoder can make better use of
multi-modal information, because the combination of
input data in the channel dimension can make the con-
volution kernel of the encoder layers learn multi-modal
information simultaneously and integrate it. Although
the simple multi-path input cannot learn the comple-
mentary information of the multi-modal data, sharing
parameters can solve this problem to a certain extent.

In Table 2, we compare the performance of two atten-
tion mechanisms. On the basis of the previous experi-
ment, we added SE block [26] to each convolution layer
to weight the multi-modal information on the channel
dimension for the U-Net [15] structure. Then, we add
our MMSA structure to the multi-path structure to
realize the self-weighted fusion of multi-modal informa-
tion. Experimental results show that both attention
mechanisms can improve the performance of the ori-
ginal network, furthermore, our method achieves the op-
timal results.

Figure 4 shows examples of segmentation results. For
simplicity of visualization, only Flair image is shown.
Among them, different colors represent different cat-
egories, green for edema, red for necrosis, yellow for
enhancing tumor core, blue for non-enhancing tumor
core. As shown in Fig. 4, our method is more accurate
for the segmentation of lesions, and the area of mis-
classification is less comparing with the approach of sin-
gle path with the SE block. The segmentation results are
more approximate with that of the Ground truth.

Dice Sensitivity Positive Predicted Value

WT TC ET WT TC ET WT TC ET
U-Net + SE 0.8514 06253 0.8009 0.8666 0.7163 0.8599 0.8811 0.6624 0.8373
Multi (shared) + MMSA 0.8726 0.6563 0.8313 0.8695 0.7207 0.8613 0.8994 0.6738 0.8421
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(b) Ground truth

Fig. 4 Segmentation result of the brain tumor from a training image

(a) Flair image

(c) U-Net +SE (d) Our method

Discussion

In the independent testing set, the model obtains similar re-
sults. It shows that the model has a certain generalization
ability in the task of glioma segmentation. In order to verify
the effectiveness of self-attention aware convolution, the
comparative experiment is carried out under the same
training parameters. The starting point of this paper is to
study how to make better use of multi-modal data. The task
of brain glioma segmentation here is just to verify the per-
formance of the model, and the method can be used for
other multi-modal image segmentation tasks.

In order to cooperate with the multi-modal data fusion
scheme proposed, we adopt the design of multi-path
input. Therefore, missing modality and the change of
input order will seriously affect the test results, which
makes the model not flexible enough in use.

Conclusions

In this paper, we introduce an attention mechanism
architecture for 3D multi-modal image biomedical
segmentation. With the proposed multi-modality self-
attention aware convolution, the segmentation result is
improved by counting the different impact of different
features from different modalities. The self-attention aware
deep network provides an effective solution for the multi-
modal problem with adaptive weighting and fusion mech-
anism based on data learning. Experimental results on
BRATS-2015 dataset demonstrate that our method is ef-
fective and achieves better segmentation results comparing
the single path with simple concatenative and without tak-
ing account of the variety of each modality. In the future,
more research with our proposed MMSA network will be
done on the application of medical segmentation based on
multi-parameter MRI in some complex application situ-
ation such as the liver diagnosis, where there exists close
appearance among lesions and surroundings, at the mean-
time, large diversity exists among same types of lesions.
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