
Yavari Nejad and Varathan ﻿
BMC Med Inform Decis Mak          (2021) 21:141  
https://doi.org/10.1186/s12911-021-01493-y

RESEARCH ARTICLE

Identification of significant climatic risk 
factors and machine learning models in dengue 
outbreak prediction
Felestin Yavari Nejad and Kasturi Dewi Varathan*   

Abstract 

Background:  Dengue fever is a widespread viral disease and one of the world’s major pandemic vector-borne 
infections, causing serious hazard to humanity. The World Health Organisation (WHO) reported that the incidence 
of dengue fever has increased dramatically across the world in recent decades. WHO currently estimates an annual 
incidence of 50–100 million dengue infections worldwide. To date, no tested vaccine or treatment is available to stop 
or prevent dengue fever. Thus, the importance of predicting dengue outbreaks is significant. The current issue that 
should be addressed in dengue outbreak prediction is accuracy. A limited number of studies have conducted an in-
depth analysis of climate factors in dengue outbreak prediction.

Methods:  The most important climatic factors that contribute to dengue outbreaks were identified in the current 
work. Correlation analyses were performed in order to determine these factors and these factors were used as input 
parameters for machine learning models. Top five machine learning classification models (Bayes network (BN) models, 
support vector machine (SVM), RBF tree, decision table and naive Bayes) were chosen based on past research. The 
models were then tested and evaluated on the basis of 4-year data (January 2010 to December 2013) collected in 
Malaysia.

Results:  This research has two major contributions. A new risk factor, called the TempeRain factor (TRF), was identi-
fied and used as an input parameter for the model of dengue outbreak prediction. Moreover, TRF was applied to dem-
onstrate its strong impact on dengue outbreaks. Experimental results showed that the Bayes Network model with the 
new meteorological risk factor identified in this study increased accuracy to 92.35% for predicting dengue outbreaks.

Conclusions:  This research explored the factors used in dengue outbreak prediction systems. The major contribution 
of this study is identifying new significant factors that contribute to dengue outbreak prediction. From the evalua-
tion result, we obtained a significant improvement in the accuracy of a machine learning model for dengue outbreak 
prediction.
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Background
Pandemic infectious diseases are spreading in many geo-
graphical areas. The World Health Organisation (WHO) 

has reported that dengue fever is one of the most impor-
tant mosquito-borne and deadliest infectious diseases 
which have been caused by the dengue virus. Accord-
ingly, this disease is a threat and poses severe risk to 
human populations in tropical and subtropical regions 
[1–7]. Member states in the three WHO regions regularly 
reported an increase in the annual number of cases from 
2.2 million in 2010 to 3.2 million in 2015 [8]. A recent 
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study from WHO indicated that 390 million dengue 
infections occur annually (95% credible interval of 284–
528 million); among which, 96 million (67–136 million) 
are manifested clinically with any severity of the disease 
[9, 10]. There is a research that works on how dengue 
has changed global threat by vector-borne disease and 
will help decision-makers worldwide to better prepare 
for and respond to future changes in dengue risk for the 
years 2020, 2050 and 2080 [11].

As of December 2018, the Ministry of Health (MOH) 
of Malaysia has recorded approximately 80,615 den-
gue cases with 147 deaths compared with 19,884 cases 
in December 2011 with 36 deaths [12].The number of 
cases increased approximately fourfold. By the end of 
March 2019, 39,805 cases of dengue with 64 deaths were 
reported in Malaysia compared with 16,917 cases with 34 
deaths in March 2018 [13].

The alternative solutions would be to prevent and con-
trol the outbreak of this disease. One of the ways in achiev-
ing this is by having a good prediction on the existence 
of the outbreak. This kind of predictions helps the higher 
authorities as well as individuals to devise plans and han-
dle the situation in an efficient and effective manner [14, 
15]. The accuracy of a prediction system for outbreaks is 
the primary and important concern for controlling den-
gue fever [14]. Therefore, establishing related risk factors 
is critical for prediction systems [16]. Given that climate 
factors play a key role in this disease, identifying the rela-
tion between weather information and dengue outbreak 
incidence is a major task in establishing an accurate pre-
diction system for future outbreaks [17–19]. In the current 
study, important climatic risk factors, such as temperature, 
relative humidity and rainfall amount, were examined. The 
current accuracy for prediction systems based on climate 
factors ranges from 82.39 to 90.5% [16, 20–25].

This research aims to describe the dengue prediction 
system accuracy and the level of risk factors that contrib-
ute to a dengue outbreak prediction system and identify 
the associations amongst new climate risk factors. The 
detailed factors are then used as inputs for predicting 
dengue outbreaks.

Related works
Various early warning and monitoring systems are cur-
rently implemented to monitor dengue outbreaks world-
wide. Dengue prediction models have been previously 
investigated, but some of these models still exhibit limi-
tations in achieving high accuracy in dengue outbreak 
prediction [14, 15]. Different models and techniques have 
been integrated into the design of several models for pre-
dicting dengue outbreaks. A number of studies have also 
established prediction models for dengue outbreaks using 
artificial neural networks [16].

Hybrid models have been used in outbreak prediction 
research. A hybrid model is an example of an integrated 
model, and many models based on genetic algorithms 
are available to determine the weight in a neural net-
work model [14, 17–19, 25, 26]. In Singapore, researchers 
found significant correlated dengue cases with climatic 
variables by using a Poisson regression model [27]. One 
researcher [22] developed a dengue outbreak prediction 
system in Singapore and obtained 90% accuracy. There 
are research that was established by using decision tree 
in prediction system [23]. One research in Indonesia was 
concerned with dengue outbreak prediction using a GIS-
based early warning system [20]. Another study from the 
National Taipei University of Technology used C-support 
vector classification to forecast dengue fever epidem-
ics in Taiwan, and the accuracy of radial basis function 
(RBF) model was 90.5% [21].

Vulnerability maps of dengue incidences have been 
generated in Malaysia, resulting in the development and 
implementation of visualised and predictive modelling 
using geographic information systems (GIS) for dengue 
fever in Selangor, Malaysia [28]. There are different mod-
els of dengue outbreak prediction systems in Malaysia 
have achieved different accuracies [16, 25].In 2015, [29] 
predicted localised dengue incidences in Malaysia using 
an ensemble system for identification and found that 
ensemble models exhibit better prediction power than a 
single model [29].The prediction of dengue outbreaks is 
crucial worldwide because this infectious disease remains 
as a major issue in many countries [14, 26, 30, 31]. 
Table  1 lists studies on different models of dengue out-
break prediction with distinct climatic risk factors. The 
asterisk (*) in the columns of the table denotes the risk 
factors used in different studies.

Most studies on dengue fever were conducted in Asian 
countries, such as Malaysia, Singapore, Taiwan, Indone-
sia, Bangladesh and Thailand, are critical areas for den-
gue fever. Most studies have shown that temperature and 
rainfall directly and significantly affect dengue outbreaks 
[15, 18, 25, 26, 30, 31].

Moreover, changing climatic factors, such as increas-
ing temperature, rainfall and humidity, are the most 
influential driving forces of dengue virus transmission 
[31]. One study correlated dengue cases with climatic 
variables in the city of Singapore and the model for den-
gue cases was considered the dependent variable; mean-
while, climatic variables, such as rainfall, maximum and 
minimum temperatures and relative humidity, were 
considered independent variables [27]. On the basis of 
the grade of each risk factor used in the 22 references 
listed in Table 1, most studies primarily used total rain-
fall (17 studies), average temperature (16 studies), relative 
humidity (15 studies), minimum temperature (11 studies) 



Page 3 of 12Yavari Nejad and Varathan ﻿BMC Med Inform Decis Mak          (2021) 21:141 	

Ta
bl

e 
1 

Ri
sk

 fa
ct

or
s 

us
ed

 in
 d

iff
er

en
t r

es
ea

rc
he

s 
fo

r d
en

gu
e 

ou
tb

re
ak

 p
re

di
ct

io
n 

m
od

el
s 

fro
m

 2
00

5 
to

 2
01

8

Re
fe

re
nc

es
Te

ch
ni

qu
e

Ye
ar

G
eo

gr
ap

hi
ca

l d
at

a 
us

ed
Te

m
pe

ra
tu

re
H

um
id

it
y

Ra
in

fa
ll

M
ea

n

M
in

Av
g

M
ax

Re
la

tiv
e 

(m
ea

n)
Cu

m
ul

at
iv

e 
ra

in
fa

ll
To

ta
l r

ai
nf

al
lM

ax
 2

4-
h 

ra
in

fa
ll

M
ax

 1
-H

 ra
in

fa
ll

Bi
-w

ee
kl

y

[3
2]

W
av

el
et

 c
oh

er
en

ce
 a

na
ly

si
s/

qu
as

i-
Po

is
so

n 
re

gr
es

si
on

 c
om

bi
ne

d 
w

ith
 

di
st

rib
ut

ed
 la

g 
no

nl
in

ea
r m

od
el

 
(D

LN
M

)

20
18

Ph
ili

pp
in

es
*

*

[3
3]

G
en

er
al

iz
ed

 li
ne

ar
 m

od
el

20
18

Ba
ng

la
de

sh
*

*
*

[3
4]

N
eg

at
iv

e 
bi

no
m

ia
l r

eg
re

ss
io

n 
(N

BR
)/

ge
ne

ra
liz

ed
 e

st
im

at
in

g 
eq

ua
tio

n 
(G

EE
)

20
17

Vi
et

na
m

*
*

[3
5]

A
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

k 
(A

N
N

)
20

16
Ph

ili
pp

in
e

*
*

*

[3
6]

D
is

tr
ib

ut
ed

 la
g 

no
n-

lin
ea

r m
od

el
s 

(D
LN

M
)/

ge
ne

ra
lis

ed
 e

st
im

at
in

g 
eq

ua
tio

n 
m

od
el

s 
(G

EE
)

20
16

C
hi

na
*

*
*

*

[3
7]

Sp
ea

rm
an

 ra
nk

 c
or

re
la

tio
n/

di
st

rib
-

ut
ed

 la
g 

no
n-

lin
ea

r m
od

el
 (D

LN
M

)
20

14
Si

ng
ap

or
e

*
*

*
*

*
*

[3
8]

D
is

tr
ib

ut
ed

 la
g 

no
nl

in
ea

r m
od

el
 

(D
LN

M
) a

nd
 M

ar
ko

v 
ra

nd
om

 fi
el

ds
20

14
Ta

iw
an

*
*

*
*

*
*

*

[3
9]

G
en

er
al

iz
ed

 a
dd

iti
ve

 m
od

el
 (G

A
M

)
20

14
Eu

ro
pe

*
*

*
*

[4
0]

G
en

er
al

iz
ed

 a
dd

iti
ve

 m
od

el
 (G

A
M

)
20

13
M

ex
ic

o
*

*
*

[4
1]

Po
is

so
n 

ge
ne

ra
liz

ed
 a

dd
iti

ve
 m

od
el

/
di

st
rib

ut
ed

 n
on

-li
ne

ar
 la

g 
m

od
el

 
(D

LM
N

)

20
13

M
al

ay
si

a,
*

*
*

*
*

*

[2
2]

Po
is

so
n 

m
ul

tiv
ar

ia
te

 re
gr

es
si

on
 

m
od

el
s

20
13

Si
ng

ap
or

e
*

*

[4
2]

A
ut

or
eg

re
ss

iv
e 

in
te

gr
at

ed
 m

ov
in

g 
av

er
ag

e 
(A

RI
M

A
)

20
13

M
al

ay
si

a
*

*
*

[4
3]

Po
is

so
n 

m
ul

tiv
ar

ia
te

 re
gr

es
si

on
20

12
Si

ng
ap

or
e

*
*

[4
4]

Sp
ea

rm
an

’s 
ra

nk
 c

or
re

la
tio

n 
co

ef
-

fic
ie

nt
 (S

RC
C

)
20

12
Si

ng
ap

or
e

*
*

*

[3
]

Ve
ct

or
–h

os
t t

ra
ns

m
is

si
on

 m
od

el
20

12
Ta

iw
an

*
*

*
*

[1
4]

N
eu

ra
l n

et
w

or
k 

an
d 

ge
ne

tic
 

al
go

rit
hm

20
12

M
al

ay
si

a
*

[4
5]

G
en

er
al

is
ed

 li
ne

ar
 m

od
el

 (G
LM

)/
Ba

ye
si

an
 fr

am
ew

or
k 

us
in

g 
M

ar
ko

v 
ch

ai
n 

M
on

te
 C

ar
lo

 (M
C

M
C

)

20
11

Br
az

il
*

*
*

[1
6]

A
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

ks
 (A

N
N

)
20

10
Si

ng
ap

or
e

*
*

*

[4
6]

M
ul

tip
le

 re
gr

es
si

on
 a

nd
 d

is
cr

im
i-

na
nt

 a
na

ly
si

s 
te

ch
ni

qu
es

/P
ei

rc
e 

sk
ill

 s
co

re

20
10

In
do

ne
si

a
*

*
*

*
*



Page 4 of 12Yavari Nejad and Varathan ﻿BMC Med Inform Decis Mak          (2021) 21:141 

Ta
bl

e 
1 

(c
on

tin
ue

d)

Re
fe

re
nc

es
Te

ch
ni

qu
e

Ye
ar

G
eo

gr
ap

hi
ca

l d
at

a 
us

ed
Te

m
pe

ra
tu

re
H

um
id

it
y

Ra
in

fa
ll

M
ea

n

M
in

Av
g

M
ax

Re
la

tiv
e 

(m
ea

n)
Cu

m
ul

at
iv

e 
ra

in
fa

ll
To

ta
l r

ai
nf

al
lM

ax
 2

4-
h 

ra
in

fa
ll

M
ax

 1
-H

 ra
in

fa
ll

Bi
-w

ee
kl

y

[4
7]

A
rt

ifi
ci

al
 n

eu
ra

l n
et

w
or

ks
 (A

N
N

)
20

09
Tu

rk
ey

*
*

*

[4
8]

En
tr

op
y 

an
d 

ar
tifi

ci
al

 n
eu

ra
l n

et
w

or
k

20
08

Th
ai

la
nd

*
*

*
*

*

[4
9]

Ko
lm

og
or

ov
-S

m
in

ov
 te

st
/P

ea
rs

on
’s 

co
rr

el
at

io
n 

co
effi

ci
en

t/
st

ep
w

is
e 

re
gr

es
si

on
 te

ch
ni

qu
es

20
05

Th
ai

la
nd

*
*

*
*

*

To
ta

l
11

16
10

15
3

17
1

1
2

3



Page 5 of 12Yavari Nejad and Varathan ﻿BMC Med Inform Decis Mak          (2021) 21:141 	

and maximum temperature (10 studies) as inputs of pre-
diction models. However, none of the studies focused on 
the detailed analysis of the factors nor investigated the 
detailed relationship that can exist amongst factors.

Methods
This section explains the methodology used for this 
research, including the dataset used, the analysis process, 
the newly identified integrated input factors, the evalua-
tion with machine learning models and the evaluation 
method. Figure 1 illustrates the conceptual framework of 
our research.

Dataset
Data are retrieved from two official sources. The dengue 
fever incident and confirmed cases has published weekly 
on Ministry of Health Malaysia (MOH) portal and the 
report of location and number of dengue confirmed case 
is available and accessible on weekly basis from [12]. In 
order to access each of the files, the following link pro-
vides the access. However, the report number based on 
the weeks must be stated explicitly.

http://​www.​moh.​gov.​my/​index.​php/​datab​ase_​stores/​
attach_​downl​oad/​337/​report number

For example to retrieve the report no. 234 (week10, 
2012):

http://​www.​moh.​gov.​my/​index.​php/​datab​ase_​stores/​
attach_​downl​oad/​337/​234

Besides that, this report can also be obtained via a simple 
search in any search engine by using the following search 
terms together with required week number and year:

“SITUASI SEMASA DEMAM DENGGI DI MALAY-
SIA Bagi Minggu week number/year”

English Translation:
Situation of Dengue Fever in Malaysia for week 

number/year
Moreover, the climatic data are obtained from Malay-

sian Meteorological Department (MMD) [50]. However, 
the processed data is available upon reasonable request 
from the authors.

Data were collected from two sources. We obtained 
weekly data on dengue confirmed cases based on two fed-
eral territories, namely, Kuala Lumpur (Wilayah Perseku-
tuan Kuala Lumpur) and Putrajaya, from January 2010 to 
December 2013. The weather data of Kuala Lumpur and 
Putrajaya were retrieved from Malaysian Meteorologi-
cal Department (MMD) for the period of January 2010 
to December 2013 [50]. Thus, 209  weeks of confirmed 

dengue cases and meteorological data were evaluated in 
this study. However, approximately 8% of the data were 
missing in the MMD datasheets for the study period. Thus, 
we obtained the missing data for this period from the US 
Weather Channel Interactive (https://​weath​er.​com), which 
also provides Malaysian meteorological data. The data 
were fitted simultaneously with the Putrajaya–Cyber-
jaya Station in Malaysia. Only minimum temperature, 
maximum temperature, average temperature, minimum 
humidity and rainfall were selected because many studies 
have emphasised that these factors are the most impor-
tant risk factors for dengue outbreak prediction models, 
as shown in Table 1. Figure 2 illustrates two plots of data 
from January 2010 to December 2013.

The data are combined and cleaned accordingly. The 
preprocessed data are analysed, and new detailed factors 
are identified. The factors are then integrated and fed as 
integrated inputs to different machine learning models 
and evaluated. The following sections provide a detailed 
description of each process involved in this framework.

Analysis
Weather data from MMD provide daily weather infor-
mation, and the incidence of dengue cases is published 
weekly by MOH. Thus, data were normalised and clas-
sified into two levels namely, ‘low risk’ and ‘high risk’, 
on a weekly basis [51] Weather and meteorological fac-
tors play important roles in the incidence of dengue 
fever. Thus, the dataset was analysed, and the relation-
ship between the incidence of dengue cases and weather 
information was determined every week using the Pear-
son correlation coefficient (PCC) [52].

Identification of significant factors
The most significant climate factors were identified based 
on the correlation analysis of the dataset, as shown in 
Table 2. The analysis result indicated that the highest cor-
relation exists between minimum temperature and den-
gue incidence, followed by cumulative rainfall and the 
incidence of dengue cases determined in different weeks.

Minimum temperature and daily rainfall are the most 
significant dengue weather-based risk factors [36, 53–56]. 
The average minimum temperature can be calculated as 
follows (Eq. 2):

(1)
R =

∑
xiyi −

∑
xi
∑

yi
N√(

∑
x2i −

(
∑

xi)
2

N

)(
∑

y2i −
(
∑

yi)
2

N

)

(2)Average Min Temperature Week(i) =
Minimmum Temperature (Current Week)+

∑5
n=0 Min Temperature [Week(i− n)]

6

http://www.moh.gov.my/index.php/database_stores/attach_download/337/report
http://www.moh.gov.my/index.php/database_stores/attach_download/337/report
http://www.moh.gov.my/index.php/database_stores/attach_download/337/234
http://www.moh.gov.my/index.php/database_stores/attach_download/337/234
https://weather.com
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where i is the number of weeks from which the average 
minimum temperature and [Week(i − n)] is the mini-
mum temperature of the prior weeks to the current week 
plus minimum temperature of current week [n = 0]. To 
find average, the result divided by 6 [5 weeks before plus 
current week].

The cumulative rainfall for week i can be calculated 
using Eq. 3, as follows:

where i is the desired week from which the total rainfall 
will be calculated, cumulative rainfall week (i) is the final 
calculation and week (i − n) is the week prior to week (n).

Table  3 provides the PCCs between the weather vari-
ables and the incidence of dengue cases. The underlined 
and highlighted high positive numbers showed the high-
est correlation and coefficients between weather param-
eters and the incidence of dengue fever. Table 3 presents 
the results for 7 weeks prior to the current week and the 
optimum value for the average minimum temperature 
(0.499).

(3)Cumulative Rain fall Week(i) =

1∑

n = 0

[Total Rainfall Week(i− n)]

The highest value for cumulative rainfall (0.0071) was 
obtained for 2 weeks prior to the current week (Table 3).

Thus, the average minimum temperature of Week 5 
(plus the current week) and the cumulative rainfall for 
Week 2 (prior to the current week) exhibit high correla-
tion with dengue cases in accordance with the correla-
tion analysis. The two factors will be regarded as TRF and 
used as input parameters for dengue outbreak risk level 

prediction. The combination of factors is shown in Fig. 3.
The cumulative rainfall for 2 weeks prior to the current 

week is identified as a significant factor because it coin-
cides with the life cycle of an Aedes aegypti mosquito, 
i.e. approximately 2 weeks. Thus, this shows that there is 
a possibility that it may happen right after an A. aegypti 
mosquito completes its life cycle and becomes an adult 
[38, 53–58].

Prediction using machine learning models
Once significant factors have been identified, the 
research proceeded towards predicting the risk inci-
dence level of dengue fever. We considered high risk 

Fig. 1  Conceptual framework for identifying significant climate factors in dengue outbreak prediction
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as existence of dengue outbreak and low risk as no 
outbreak. To predict this level, we tested five machine 
learning models using input factors with and without 
TRF. Table  4 provides the detailed input factors and 
descriptions.

On the basis of the high accuracies obtained [21, 59], 
we selected Bayes network (BN) models, support vec-
tor machine (SVM), RBF tree, decision table and naive 

Bayes to evaluate the factors using WEKA version 3.8.0 
[60]. We used the cross-validation (tenfold) technique 
to evaluate the models.

Fig. 2  Weekly incidence of dengue with average temperature and rainfall from January 2010 to December 2013 (week 1 to week 209)

Table 2  Correlation between dengue incidence cases and 
climate factors

Temperature Mean 
relative 
humidity

Rainfall

Minimum 
temperature

Mean 
temperature

Maximum 
temperature

0.447 0.339 0.316 − 0.176 − 0.020

Table 3  Pearson correlation coefficient (PCC) between climatic 
factors and incidence of dengue cases

Average minimum 
temperature

Cumulative 
rainfall

Current week 0.447 − 0.0201

1 Week prior 0.465 0.0065

2 Week prior 0.480 0.0071

3 Week prior 0.494 − 0.0005

4 Week prior 0.498 − 0.0123

5 Week prior 0.499 − 0.0139

6 Week prior 0.489 − 0.0045

7 Week prior 0.476 0.0020
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Evaluation metrics
We can evaluate the performance of classifiers on the 
basis of several accuracy measures and parameters. 
Moreover, some accuracy and error measures are used 
to determine the distance between the predicted and the 
actual known values [61]. In this study, we used the accu-
racy metric to measure the performance of the classifiers 
[52, 62, 63]. Equation 4 shows how accuracy is calculated.

Results
Table  5 presents the results from five machine learning 
models with and without TRF inputs. Improved results 
and reduced errors were obtained using the weather data 
(as external risk factors for a dengue fever outbreak pre-
diction model) by applying machine learning models (as 
data analysers) and adding newly identified factors (TRF).

(4)Accuracy = 100 ∗
(TP+ TN)

(TP+ FP+ TN + FN)

Fig. 3  Components of TempeRain factor (TRF)

Table 4  List of input factors used in prediction model with identified factors (TRF) and without TRF

Input factors without TRF Input factors with TRF

Type Parameter description Type Parameter description

Weather factors Minimum temperature (°C) Weather factors

Mean temperature (°C) Mean temperature (°C)

Maximum temperature (°C) Maximum temperature (°C)

Mean relative humidity (%) Mean relative humidity (%)

Cumulative of rainfall (mm)

TRF factors Average of minimum tem-
perature 5 weeks plus 
current week (°C)

Cumulative of rainfall for 
2 weeks prior to the cur-
rent week (mm)

Table 5  Machine learning classifier models using cross-
validation (tenfold) with TempeRain factor (TRF)

Models Accuracy (%)

Bayes net

 With TRF 92.35
 Without TRF 91.39

SVM

 With TRF 88.04

 Without TRF 88.00

RBF tree

 With TRF 89.47

 Without TRF 89.47

Decision table

 With TRF 90.41

 Without TRF 89.95

Naive Bayes

 With TRF 89.4737

 Without TRF 88.9952
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Thus, the proposed factors and machine learning 
model are beneficial for predicting the dengue risk level. 
The results also showed that models with TRF achieved 
slightly higher accuracies compared with those without 
TRF. The highest accuracy was obtained by the BN classi-
fier with TRF (92.35%).

Other studies exhibit different accuracies based on 
their own private databases, which consist of data col-
lected from patients in hospitals, compared with our 
research area [20, 23, 25, 64]. Our research used acces-
sible data for climate factors and dengue cases.

Table  6 shows the accuracy of the BN classifier with 
TRF compared with the other models that used climate 
factors. All the models compared in this study used 
binary classification in dengue outbreak prediction. [16, 
22, 48, 63] including the proposed model in this study 
classified dengue outbreak to “outbreak” and “no out-
break”, [21] classified it as “less” and “no case”. The pro-
posed model with TRF achieved the highest accuracy of 
92.35% compared with the other models. Besides that, 
this research used higher number of data compared to 
[21, 22] which yield an accuracy of more than 90%.

Discussions
In this study, the use of TRF in BN classifiers managed 
to outperform the accuracies obtained by other stud-
ies compared in this research. It managed to reduce the 
error of prediction models as well. We believed TRF is 
the contributing factor that enhances the accuracy. This 
factor is believed to retain the accuracy of the outbreak 
prediction model in other countries with similar geo-
graphical settings. This will definitely impact many coun-
tries such as Philippines, Indonesia, Thailand, Vietnam 
and Singapore that has similar geographical settings. The 
risk factors used by all of these countries are portrayed in 
Table  1. However, countries with different geographical 
settings, may differs in terms of lagged temperature and 
rainfall values. This study also supports previous studies 
that shows temperature and rainfall are most important 
risk factor that contributes to dengue outbreak.

This outbreak prediction model is expected to particu-
larly help authorized organizations or decision makers in 
health organizations, governments and other concerned 
groups to become aware and develop improved preven-
tion programs in the near future. An early warning sys-
tem based on this model may help in surveillance and 
controlling the outbreak. This will ensure good reactive 
management intervention to be in placed effectively and 
efficiently to curb the epidemics. Thus, this helps com-
munities to be prepared to face the outbreak.

Future work should explore other Malaysian dataset as 
well as dataset from other countries especially in using 
TRF by using different machine learning models. Besides 
that, future research should emphasize the exploration of 
other risk factors for predicting dengue outbreaks.

Conclusion
We identified a new significant risk factor, called TRF, 
which combined the lagged average minimum tem-
perature of 5 weeks together with the current week and 
lagged cumulative rainfall for 2 weeks. TRF has contrib-
uted to dengue outbreak prediction and these lagged 
weather variables can be useful in determining the den-
gue outbreak more accurately. The research managed to 
reveal that the use of accurate and appropriate input fac-
tors for outbreak prediction provides enhanced and pre-
cise results.

The integration of TRF into the BN model resulted 
in a significant accuracy of 92.35%. The results showed 
that using TRF in the BN model outperformed all other 
outbreak prediction models considered in this study. 
We do acknowledge although the results showed only 
almost 1% increase compared to without TRF, this 
improvement is important as it managed to predict 1 
more extra outbreak in every 100 predicted outbreaks. 
Predicting an increase of 1% outbreak will definitely 
give significant impact especially for public health sur-
veillance in dealing with infectious diseases like dengue.

Table 6  Benchmarking and comparing accuracy of the proposed model with previous studies on dengue outbreak prediction model 
that uses accessible data

References Year Model Accuracy (%)

[63] 2018 Correlation and autoregressive distributed lag model 84.90

[21] 2016 C-SVC kernel and RBF 90.50

[22] 2013 Poisson multivariate regression models 90.00

[16] 2010 Artificial neural networks 82.39

[48] 2008 Automatic prediction system by using entropy and artificial neural 
network

85.92

Our proposed model Bayes network model using TRF Accuracy = 92.35
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Although many risk factors for dengue outbreak are 
available, we only focused on the detailed analysis of 
temperature and rain risk factors for dengue outbreaks, 
which have been emphasised as the most important 
factors due to the analysis of importance and access 
limitation. Future researchers should also test and 
explore the TRF factors in other datasets from different 
countries, region or different time period. This research 
is believed to be an eye opener for future researchers in 
exploring lagged variables in their outbreak prediction, 
which include but not limited to dengue. Besides that, 
the use of deep learning in dengue outbreak prediction 
should also be ventured.
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