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Abstract 

Background:  The ability to prioritize people living with HIV (PLWH) by risk of future transmissions could aid public 
health officials in optimizing epidemiological intervention. While methods exist to perform such prioritization based 
on molecular data, their effectiveness and accuracy are poorly understood, and it is unclear how one can directly 
compare the accuracy of different methods. We introduce SEPIA (Simulation-based Evaluation of PrIoritization 
Algorithms), a novel simulation-based framework for determining the effectiveness of prioritization algorithms. SEPIA 
expands upon prior related work by defining novel metrics of effectiveness with which to compare prioritization tech-
niques, as well as by creating a simulation-based tool with which to perform such effectiveness comparisons. Under 
several metrics of effectiveness that we propose, we compare two existing prioritization approaches: one phyloge-
netic (ProACT) and one distance-based (growth of HIV-TRACE transmission clusters).

Results:  Using all proposed metrics, ProACT consistently slightly outperformed the transmission cluster growth 
approach. However, both methods consistently performed just marginally better than random, suggesting that there 
is significant room for improvement in prioritization tools.

Conclusion:  We hope that, by providing ways to quantify the effectiveness of prioritization methods in simulation, 
SEPIA will aid researchers in developing novel risk prioritization tools for PLWH.

Keywords:  SEPIA, HIV, Prioritization, Metrics, Simulation-based evaluation, FAVITES, Phylogenetic

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/. The Creative Commons Public Domain Dedication waiver (http://​creat​iveco​
mmons.​org/​publi​cdoma​in/​zero/1.​0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Molecular data gathered on human immunodeficiency 
virus (HIV) is useful for understanding the systems of 
epidemic spread of HIV. Such understanding can bet-
ter allow us to intervene and treat high-risk groups of 
individuals. Methods of epidemic intervention include 
treatments such as antiretroviral therapy (ART) and 
awareness programs [1]. Adherence to ART can cause 
viral suppression in people living with HIV (PLWH) and 
significantly reduces their risk of transmission, mak-
ing ART distribution a potentially effective approach to 

combating the spread of HIV. However, a major issue 
for public health officials is how to allocate the limited 
amount of available resources.

In many parts of the world, when testing and treating 
PLWH, it has become standard practice to record vari-
ous metadata on the patients, including viral genomic 
sequences (often of the pol and gag regions). This infor-
mation is often used to determine groups of individu-
als with high risk of future transmission, which can help 
public health officials better allocate limited resources 
[2]. The prioritization of PLWH can be explored through 
a computational framework: given a list of individu-
als along with metadata and viral sequences, order the 
individuals in descending order of inferred risk of future 
transmission.

Molecular epidemiology provides a natural frame-
work for prioritizing individuals from viral sequence 
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data. Currently, the standard approach is to use HIV-
TRACE [3] to infer transmission clusters based on pair-
wise distances between sequences, monitor the growth 
of the transmission clusters over time, and prioritize 
individuals in descending order of transmission cluster 
growth. ProACT [4], on the other hand, is a prioritization 
approach that utilizes properties of a phylogeny inferred 
from the viral sequences.

The following questions naturally arise: how well does a 
given prioritization method perform, and which method 
is superior in specific contexts? With real-world data, the 
ground truth of who transmitted to whom is typically 
unavailable or error-prone. Further, even with a known 
transmission history, it is unclear how to quantify effec-
tiveness: do we count the number of transmissions from 
a single individual, or the total number of transmissions 
in a transmission chain seeded from a single individual, 
or perhaps we are interested in properties of the underly-
ing contact network (e.g. individuals with large numbers 
of social contacts)? Thus, it is unclear how to quantita-
tively assess the performance of different prioritization 
methods.

To address this open problem, we introduce SEPIA 
(Simulation-based Evaluation of PrIoritization Algo-
rithms), a novel simulation-based framework for meas-
uring the effectiveness of prioritization algorithms. 
Previously, in Moshiri et al. (2021) [4], ProACT and HIV-
TRACE were compared with respect to effectiveness, but 
the comparisons were limited to a simulated epidemic 
dataset modeling the San Diego HIV epidemic between 
2005 and 2014. Like this prior work, SEPIA utilizes simu-
lated epidemic data, such as those generated by FAVITES 
[5] or PANGEA.HIV.sim [6], to define a ground truth 
with which prioritization methods can be directly com-
pared. However, SEPIA expands upon this prior work by 
generalizing the task of prioritization effectiveness com-
parison and further exploring the mathematical meaning 
of “effectiveness” by defining 6 metrics of effectiveness, 
each inspired by properties of epidemics that are inher-
ently of interest to public health officials for intervention. 
Specifically, the user runs a prioritization method on a 
simulated dataset; then, given the prioritization and the 
simulated dataset, SEPIA will measure the effectiveness 
of the prioritization using the metrics defined below.

Implementation
Given a prioritization, SEPIA computes an effectiveness 
score according to one of the following metrics:

•	 Metric 1: Direct Transmissions This metric aims to 
quantify the direct impact of each individual u on the 
spread of the virus within a population by counting 

the total number of individuals to whom u directly 
transmitted.

•	 Metric 2: Transmission Rate This metric aims to 
quantify the rate of transmission of each individual u, 
giving higher values to those who transmitted most 
frequently and most recently. We produce a step 
function representing the number of transmissions 
from individual u over time, and we measure the 
slope of a regression line inferred from the step graph 
(Fig. 1).

•	 Metric 3: Indirect Transmissions This metric 
expands on Metric 1 to quantify an individual’s 
broader impact on the community. For an individ-
ual u, we count the number of individuals who were 
infected by somebody who was infected by u.

•	 Metric 4: Direct and Indirect Transmissions This is 
the sum of Metrics 1 and 3.

•	 Metric 5: Number of Contacts This metric meas-
ures each individual’s total number of contacts in the 
underlying contact network.

•	 Metric 6: Number of Contacts and Transmissions 
This is the sum of Metrics 1 and 5.

Given a prioritization of n individuals and the simu-
lated data from which the prioritization was produced, 
for a given selected metric, SEPIA will compute a value 
for each individual in the prioritization. To compute a 
score comparing the user’s prioritization to the theoreti-
cal optimum, SEPIA computes the Kendall Tau-b rank 
correlation coefficient [7] between the list of ordered 
metric values and the descending list of integers from 
n to 1 (Fig.  2). The resulting Tau-b score ranges from 1 
(perfectly correlated with optimal ordering) to 0 (no bet-
ter than random ordering) to -1 (perfectly anticorrelated 
with optimal ordering).
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Fig. 1  Metric 2 is the slope of the best-fit line (red solid line) of 
the step function of the number of times a given individual has 
transmitted (red dashed lines), regressed between the time of 
the individual’s first transmission event (“Start”) and present day 
(“Present”)
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We used SEPIA to compare the effectiveness of 
two molecular epidemiological prioritization meth-
ods. One approach is to use HIV-TRACE to infer 
transmission clusters from pairwise distances of viral 
sequences, monitor the growth of the transmission 
clusters over time, and then to prioritize individuals 
in descending order of transmission cluster growth. 
The other approach is ProACT [4], a method that uti-
lizes properties of a phylogeny inferred from the viral 
sequences. We used a simulated dataset produced by 
FAVITES to emulate the HIV pandemic in San Diego 
between 2005 and 2014 [5]. The simulated datasets 
vary the expected degree in the contact network (Ed) , 
the rate at which individuals begin ART (�+) , and the 
rate at which individuals stop adhering to ART (�−).

Results
As can be seen in Fig.  3, ProACT consistently out-
performed HIV-TRACE transmission cluster growth 
using all metrics on all simulation conditions. How-
ever, both tools consistently had Tau-b scores margin-
ally higher than 0, implying that they are performing 
only marginally better than a random ordering. As the 
rate of starting ART (�+) increases, the rate of stop-
ping ART (�−) increases, and the expected degree (Ed) 
increases (i.e., as the outbreak spreads more quickly), 
ProACT’s performance with respect to metrics 5 and 
6 seems to increase slightly. Otherwise, both ProACT 
and HIV-TRACE transmission cluster growth perform 
consistently across experimental conditions.

Discussion
Across all defined metrics and all considered simulation 
conditions, ProACT consistently outperformed prior-
itization by HIV-TRACE transmission cluster growth. 
However, both approaches consistently performed just 
marginally better than a random ordering, implying that 
there is room for significant improvement in the realm of 
HIV prioritization.

Conclusions
It must be noted that, while we aimed to provide general-
ized results by varying key simulation parameters, a key 
limitation of this study is that the simulated epidemics 
are specifically modeled after the HIV epidemic in San 
Diego between 2005 and 2014. In practice, molecular 
epidemiologists will need to assess prioritization tech-
niques using simulated datasets representative of the 
pathogens and communities in which they are specifi-
cally interested.

Further, the 6 metrics we have implemented are by 
no means exhaustive, but rather, they are simply natu-
ral metrics of interest to public health officials. SEPIA is 
expandable, and we leave the implementation of novel 
metrics of effectiveness for future works.

We hope that SEPIA will enable researchers to quan-
tify and assess the effectiveness of different prioritization 
approaches in order to select the best existing prioritiza-
tion method for their communities, develop new prior-
itization methods that improve upon existing ones, and, 
ultimately, maximize the impact of the limited resources 
available to public health officials.
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Fig. 2  Given simulated epidemic data and a prioritization of the individuals in the simulated epidemic, SEPIA computes the user-selected 
effectiveness metric for each person in the prioritization. Then, to construct an overall effectiveness score for this prioritization, SEPIA computes the 
Kendall Tau-b correlation coefficient between the ordered list of effectiveness values and the theoretical optimum
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Fig. 3  Effectiveness of prioritization using ProACT and HIV-TRACE transmission cluster growth across all metrics on datasets simulated by FAVITES. 
Each column represents a single experimental condition, and each violin plot depicts the Kendall Tau-b correlation coefficients computed by SEPIA 
across 20 simulation replicates. The experimental conditions are varied by altering 3 parameters: expected number of contacts per individual (Ed) , 
rate of starting ART (�+) , and rate of stopping ART (�−)
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Availability and requirements

•	 Project name: SEPIA
•	 Project home page: https://​github.​com/​Niema-​Lab/​

SEPIA
•	 Operating system(s): Platform independent
•	 Programming language: Python
•	 Other requirements: SciPy
•	 License: GNU GPL v3.0
•	 Any restrictions to use by non-academics: Contact 

authors
•	 Manuscript data: https://​github.​com/​Niema-​Lab/​

SEPIA-​paper-​final

Abbreviations
ART​: Antiretroviral therapy; Ed:: Expected degree; HIV: Human immunodefi-
ciency virus; PLWH: People living with HIV; SEPIA: Simulation-based Evaluation 
of PrIoritization Algorithms; �+:: Rate of starting ART​; �−:: Rate of stopping 
ART​.
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