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The advanced machine learner XGBoost 
did not reduce prehospital trauma mistriage 
compared with logistic regression: a simulation 
study
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Abstract 

Background:  Accurate prehospital trauma triage is crucial for identifying critically injured patients and determining 
the level of care. In the prehospital setting, time and data are often scarce, limiting the complexity of triage mod-
els. The aim of this study was to assess whether, compared with logistic regression, the advanced machine learner 
XGBoost (eXtreme Gradient Boosting) is associated with reduced prehospital trauma mistriage.

Methods:  We conducted a simulation study based on data from the US National Trauma Data Bank (NTDB) and the 
Swedish Trauma Registry (SweTrau). We used categorized systolic blood pressure, respiratory rate, Glasgow Coma 
Scale and age as our predictors. The outcome was the difference in under- and overtriage rates between the models 
for different training dataset sizes.

Results:  We used data from 813,567 patients in the NTDB and 30,577 patients in SweTrau. In SweTrau, the smallest 
training set of 10 events per free parameter was sufficient for model development. XGBoost achieved undertriage 
rates in the range of 0.314–0.324 with corresponding overtriage rates of 0.319–0.322. Logistic regression achieved 
undertriage rates ranging from 0.312 to 0.321 with associated overtriage rates ranging from 0.321 to 0.323. In NTDB, 
XGBoost required the largest training set size of 1000 events per free parameter to achieve robust results, whereas 
logistic regression achieved stable performance from a training set size of 25 events per free parameter. For the train-
ing set size of 1000 events per free parameter, XGBoost obtained an undertriage rate of 0.406 with an overtriage of 
0.463. For logistic regression, the corresponding undertriage was 0.395 with an overtriage of 0.468.

Conclusion:  The under- and overtriage rates associated with the advanced machine learner XGBoost were similar 
to the rates associated with logistic regression regardless of sample size, but XGBoost required larger training sets to 
obtain robust results. We do not recommend using XGBoost over logistic regression in this context when predictors 
are few and categorical.
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Background
Accurate prehospital trauma triage is crucial for identify-
ing critically injured patients and determining where to 
transport these patients [1]. In this context, undertriage 
(false negative) is when a patient requiring specialized 
trauma care is transferred to a lower-level trauma centre 
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and is associated with higher mortality rates [1, 2]. Con-
versely, overtriage (false positive) occurs when a patient 
not in need of specialized trauma care is transferred to 
a higher-level trauma centre, resulting in extra costs and 
overutilization of resources [3].

The American College of Surgeons Committee on 
Trauma (ACS-COT) guidelines state that trauma sys-
tems must aim to attain a maximum of 5% undertriage 
and keep overtriage below 35% [4]. Extensive research 
has focused on the development of prediction models 
to assist emergency medical service (EMS) personnel in 
the early clinical decision making and triage process [5]. 
However, most existing trauma triage protocols perform 
poorly, leading to high rates of mistriage [6–8].

Prehospital trauma triage is particularly challenging 
due to a lack of time and patient information [9]. Previ-
ous research shows that prediction models incorporating 
several categories of predictors (physiological, demo-
graphic, anatomical, etc.) generally perform better than 
simpler models [5]. However, in the prehospital setting, 
patient information is often scarce, and health care pro-
viders need to prioritize stabilization and rapid transport 
over a thorough medical history [10, 11].

Extensive research has focused on how machine learn-
ing can improve predictions and diagnosis in medicine 
[12, 13]. Studies show that, given comprehensive input 
parameters, machine learning may outperform classi-
cal statistical methods in predicting the need for critical 
care and hospitalization in the emergency department 
and prehospital setting [14–17]. Other research indicates 
that logistic regression may perform as well as machine 
learners when used to develop clinical prediction models 
[18–20].

Little is known about how much data are needed and 
how complex the data must be to obtain accurate pre-
dictions with machine learners. Predictive accuracy is 
adversely affected when a model is transferred from one 
setting to another [21]; therefore, it is desirable to use 
models that can be developed from available local data. 
We also know that health care professionals are not will-
ing to use complex systems disrupting their workflow 
and requiring time away from the patient [22].

We wanted to study whether an advanced machine 
learner could bring any added value to prehospital 
trauma triage, given limited input data complexity. Our 
aim was therefore to assess whether, compared with 
logistic regression, which is a classical modelling tech-
nique commonly used in this context, the advanced 
machine learner XGBoost (eXtreme Gradient Boosting) is 
associated with reduced prehospital trauma mistriage. To 
estimate how much data were needed for model devel-
opment, we assessed the performance of the learners for 
different training data set sizes. We chose the machine 

learner (XGBoost) because it has recently been dominat-
ing applied machine learning and Kaggle competitions 
[23, 24].

Methods
Study design
We conducted a simulation study based on data from 
the US National Trauma Bank (NTDB) and the Swedish 
trauma registry (SweTrau). The NTDB cohort included a 
total of 813,567 patients enrolled in the NTDB in 2014. 
The SweTrau cohort included a total of 30,577 patients 
registered in the Swedish trauma registry between 2011 
and 2016.

Variables
Outcome
The outcome of the study was the pairwise difference in 
over- and undertriage rates between the models. We used 
an ISS > 15 as the gold standard to define trauma severity 
as major trauma. Patients with an ISS ≤ 15 were consid-
ered to have minor trauma [4]. We defined the overtriage 
rate as the false-positive rate and the undertriage rate as 
the false-negative rate.

•	 Overtriage rate (false-positive rate) = Number of 
patients with an ISS ≤ 15 classified as major trauma/
total number of minor trauma patients (ISS ≤ 15)

•	 Undertriage rate (false-negative rate) = Number of 
patients with an ISS > 15 classified as minor trauma/
total number of major trauma patients (ISS > 15)

By definition: Specificity + False-positive rate = 1, Sen-
sitivity + False-negative rate = 1.

Predictors
The predictors used to build our models were systolic 
blood pressure, respiratory rate, Glasgow Coma Scale 
(GCS) and age. Our rationale was that these parameters 
are known to be predictive of mortality after trauma and 
are easily collected by EMS personnel in the prehospital 
setting. We used the first recorded vital parameters at 
the scene of the injury. The vital parameters were cat-
egorized according to the Revised Trauma Score (RTS) 
[25]. Our rationale for categorizing these variables was 
that in severe trauma, it can be hard to obtain an exact 
count of the respiratory rate, GCS or an accurate meas-
ure of a very low blood pressure. We included age as a 
significant risk factor for mortality in trauma, with a sig-
nificant increase from 57 years of age [26]. Additionally, 
due to the loss of regulatory and adaptive mechanisms, 
vital signs respond differently to stressors in elderly indi-
viduals [27].
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Data
SweTrau is a nationally encompassing registry in which 
92% of Swedish hospitals record trauma cases. The 
inclusion criteria were as follows: traumatic events with 
subsequent activation of the hospital trauma protocol, 
admitted patients with an NISS > 15 and patients trans-
ferred to the hospital within 7  days of traumatic events 
with an NISS > 15. SweTrau excludes patients if the only 
injury is chronic subdural haematoma or if the hospital 
trauma protocol is activated without traumatic events 
[28].

The US National Trauma Data Bank (NTDB) is the 
largest aggregation of U.S. trauma registry data ever 
assembled. Currently, the NTDB contains detailed data 
on over six million cases from over 900 registered U.S. 
trauma centres [29]. The NTDB includes any patient with 
at least one injury diagnosis code (ICD-9CM 800–959.9), 
excluding late effects of injury, superficial injuries, and 
foreign bodies [30]. In addition, patients must be admit-
ted as trauma patients, transferred from another institu-
tion or have died as a result of their injury [30].

Eligibility criteria
The inclusion criteria of the present study were age above 
15. Observations with unrealistic recordings of SBP > 300 
and RR > 67 were excluded. Observations with systolic 
blood pressure of 0 were excluded due to uncertain 
underlying reasons ranging from unsuccessful recording 
to cardiac arrest. Observations with missing values were 
excluded.

Study size
As real-world data are often scarce, we wanted to esti-
mate how much data are actually needed to develop a 
reliable model. We therefore performed the study for dif-
ferent training set sizes. The required study size for each 
phase of model development using logistic regression is 
fairly well established, i.e., for derivation at least 10 events 
per free parameter in the potentially most complex 
model and for validation at least 100 events, assuming 
that events are more common than non-events. No study 
size guidelines exist for the ML algorithm XGBoost. We 
therefore trained the models in training sets of sizes 10, 
25, 100 and 1000 events per free parameter.

Model development
We used R for the statistical analyses and development of 
the models. The following steps were followed for each of 
the cohorts and training set size. First, a training set was 
created using a simple random draw from the complete 
cohort. The size of the training set was NX/P, where N is 
the number of free parameters, X is the number of events 

per free parameter and P is the proportion of events in 
the cohort. Each of the models was trained in this train-
ing set. Second, the validation and test sets were created 
using simple random sampling from the complete cohort. 
The size of the validation and test sets was 200/P, where 
P is the proportion of events in the cohort. We used the 
validation set to define the cut-off probability for major 
and minor trauma. The rationale for using the validation 
set and not the training set for this was to improve the 
generalization properties of the models.

The optimal cut-off was identified by performing a 
gridsearch on the output probabilities of the validation 
set, evaluating the over- and undertriage rates for every 
cut-off probability. The gridsearch was performed from 0 
to 1 in steps of 0.001. This cut-off was set to aim at an 
undertriage rate below or equal to 5% with as low over-
triage as possible to be in accordance with ACS-COT 
guidelines [4]. In the absence of undertriage below 5%, 
we set the cut-off to obtain as low undertriage as possible 
with an upper limit for overtriage below 50%. This cut-off 
was then applied to the output probabilities from the test 
set to compare the performance of the final models.

The exact performance of a model depends on the sub-
sets of data used for development, validation and test-
ing. We therefore repeated the above process 1000 times 
for every size of training set and cohort. The results are 
presented as the median and 2.5% and 97.5% percentiles 
across bootstrap samples.

Logistic regression
A logistic regression model was created using bootstrap-
ping to limit overfitting and optimism according to cur-
rent guidelines [31]. The following steps were followed. 
First, the model was fit using all data in the training set, 
creating an original model M0. Then, a bootstrap sample 
of size N was drawn with replacement from the training 
set, and the model was fit using this bootstrap sample, 
resulting in a bootstrap model Mbs,i. Mbs,i was then used 
to predict the outcomes in the training set. The resulting 
linear predictor y was regressed on the outcomes Y using 
a logistic model. The coefficients of the linear predictor, 
denoted bi, where i is the number of bootstrap samples, 
were stored. This procedure was repeated 1000 times, 
producing v = b1, b2, b3,..., b1000. v̄ was finally used to 
shrink the coefficients of the original model as v̄×M0.

Extreme gradient boosting (XGBoost)
XGBoost is an implementation of gradient boosted deci-
sion trees [23]. Gradient boosting is an approach where 
new models are created that predict the residuals or 
errors of prior models and then combined to make the 
final prediction.
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The XGBoost model was developed using the R pack-
age “xgboost”. The hyperparameters nrounds, eta, max_
depth and lambda were tuned using the r package “MLR” 
[32]. For the other hyperparameters, we used default val-
ues. The hyperparameters were tuned using MLR func-
tions following a well-defined procedure. We defined 
the searchspace for the parameters to be tuned and per-
formed a random search using fivefold cross-validation. 
This approach implied that our training and validation 
data were combined and then split into 5 equally sized 
parts. The model was trained on four of the five parts 
and evaluated on the 5th. This process was repeated until 
each of the parts had been used as the validation set. 
The hyperparameters giving the best performance were 
selected for the training of the final XGBoost model. The 
final XGBoost model was trained using only the training 
data set.

Performance measures
Model performance was assessed in terms of over- and 
undertriage rates as defined in Sect.  2.2.1. Additionally, 
we calculated the sensitivity, specificity, area under the 
curve (AUC), calibration slope and calibration intercept 
for the models. The over- and undertriage rates are pre-
sented in detail in the results section. AUC and calibra-
tion properties are mentioned in the results section and 
presented in detail as supplementary material. As sensi-
tivity and specificity can be directly calculated from the 
over- and undertriage rates, we have chosen to only pre-
sent these measures as supplementary material.

Results
The study was conducted in the NTDB and SweTrau 
cohorts in parallel (Table 1). The NTDB cohort included 
a total of 813,567 patients enrolled in the National 
Trauma Data Bank (NTDB) during 2014. The SweTrau 
cohort included a total of 30,577 patients registered in 
the Swedish trauma registry between 2011 and 2016. 
After excluding observations with missing recordings 
and applying the inclusion criteria, we were left with 
368,810 observations in the NTDB cohort and 16,547 
observations in the SweTrau cohort. The proportion of 
major trauma events in the NTDB was larger than that 
in SweTrau, probably because it only included patients 
admitted to the hospital.

Performance of models
In SweTrau, the smallest training set of 10 events per 
free parameter was sufficient to achieve robust results 
(Table  2). XGBoost obtained undertriage rates in the 
range of 0.314–0.324 with corresponding overtriage rates 
of 0.322–0.319. In SweTrau logistic regression achieved 
undertriage rates ranging from 0.312 to 0.321, with 

overtriage rates ranging from 0.323 to 0.321. The area 
under the curve (AUC), calibration slope and calibration 
intercept were calculated and are presented in Additional 
file  1: Tables S1 and S2. In SweTrau, XGBoost obtained 
a maximal AUC of 0.725 with a corresponding calibra-
tion slope of 1.056 and calibration intercept of 0.009. The 
best discrimination and calibration properties for logistic 
regression were an AUC of 0.725 with a calibration slope 
of 1.01 and calibration intercept of -0.017.

In NTDB, XGBoost required the largest training set 
size of 1000 events per free parameter to achieve robust 
results, whereas logistic regression achieved stable results 
from a training set size of 25 events per free parameter. 
For the training set size of 1000 events per free param-
eter, XGBoost achieved an undertriage rate of 0.406 with 
an associated overtriage rate of 0.463. The correspond-
ing AUC was 0.611 with a calibration slope of 1.097 and 
calibration intercept of − 0.021. For logistic regression, 
the corresponding undertriage was 0.395 with overtriage 
of 0.468 with an AUC of 0.614, calibration slope of 0.995 
and calibration intercept of − 0.015.

Overall, as shown in Fig. 1 and Table 3, the predictive 
performance was better in SweTrau than in NTDB.

Comparison of model performance
The performance of XGBoost and logistic regression was 
compared in each of the 1000 runs, i.e., the models were 
compared when they had been developed on the same 
set of training data and evaluated on the same set of test 
data. Table 3 and Fig. 2 show the difference in under- and 
overtriage rates between the models for these 1000 rep-
etitions (median and 2.5, 97.5 percentiles).

In SweTrau, there were only minimal differences in 
performance between the models. As seen from Table 3, 
the median of the difference in performance in SweTrau 
was 0 for all training set sizes. In NTDB, logistic regres-
sion achieved stable results from a training set size of 25 
events per free parameter, whereas XGBoost required the 
largest training set size of 1000 events per free parameter 
to achieve stable results. Consequently, there were differ-
ences in performance for the smaller training sets with 
a clear advantage for logistic regression. For the largest 
training data set of 1000 events per free parameter, there 
were only minimal differences in performance between 
the models.

Discussion
The aim of this study was to determine whether, com-
pared to logistic regression, the advanced machine 
learner XGBoost could bring any added value to pre-
hospital trauma triage. We found that differences in 
mistriage rates were generally very small, using few 
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categorized predictors and regardless of sample size, 
but that XGBoost required more data to provide robust 
estimates.

The time-sensitive nature of trauma makes it difficult 
for EMS personnel to gather a full medical history and 
perform a meticulous exam. The prehospital decision to 
consider the patient seriously injured followed by field 
triage to a trauma unit is often based on limited infor-
mation. It is therefore advantageous to develop reliable 

models that depend only on easily accessible data such 
as vital parameters and age.

Both models achieved the best possible overtriage of 
32% with the best possible undertriage of 31%. Thus, in 
SweTrau, the overtriage was in line with the ACS-COT 
recommendation of maximum 35% overtriage, but the 
undertriage of 31% was far from the ACS-COT recom-
mendation of maximum 5%. The performance of the 
models was better in SweTrau than in NTDB. This is 

Table 1  Characteristics of study data and sizes of data sets

NTDB, National Trauma Data Bank; SweTrau, Swedish Trauma Registry; GCS, Glasgow Coma Scale; RR, Respiratory Rate; SBP, Systolic Blood Pressure

Characteristics NTDB SweTrau

Total number of observations 813,567 30,577

Number of missing observations 422,416 10,411

Number of included observations 368,810 16,547

Proportion major trauma 0.21 0.12

Proportion female 0.38 0.35

Age (median-IQR) 51 [30, 69] 41 [25 59]

GCS Category NTDB proportion of observations SweTrau 
proportion of 
observations

13–15 0.9098 0.9173

9–12 0.0384 0.0401

6–8 0.0175 0.018

4–5 0.0061 0.009

3 0.0283 0.0156

RR Category NTDB proportion of observations SweTrau 
proportion of 
observations

30–67 0.0191 0.0543

10–29 0.9677 0.9407

6–9 0.0063 0.0036

0–5 0.0021 0.0011

SBP Category NTDB proportion of observations SweTrau 
proportion of 
observations

90–300 0.9707 0.9798

76–89 0.0192 0.0126

50–75 0.0091 0.0068

1–49 0.0011 0.0007

Size training sets (events per free parameter) NTDB SweTrau

10 714 1250

25 1786 3125

100 7143 12,500

1000 71,429 Missing

Size validation and test sets NTDB SweTrau

(200/proportion events) 952 1667
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likely a reflection of a different distribution of the input 
vital parameters in relation to the proportion of major 
trauma output in the two cohorts. Despite the higher 

proportion of events in the NTDB cohort, the categori-
cal distribution of vital parameters was similar in the two 
cohorts. This naturally implies different conditions for 
the modelling task. This also enlightens the complexity 
of modelling, showing how the performance of the same 
learner may vary from one setting to another.

In SweTrau, both models produced robust results for 
all training set sizes, and there were only minimal differ-
ences in performance. In NTDB, however, logistic regres-
sion produced reliable results from the training set of 25 
events per free parameter, whereas XGBoost required 
the largest data set of 1000 events per parameter to stabi-
lize. Thus, the results indicate that XGBoost may require 
larger and more comprehensive training data than logis-
tic regression to produce robust results. In addition, as 
opposed to XGBoost, logistic regression has the advan-
tage of being more transparent.

Previous studies have shown variable results when 
comparing logistic regression to machine learning for 
clinical prediction models. Overall, it seems that for 

Table 2  Under- and overtriage rates of logistic regression and XGBoost (median and 2.5 and 97.5 percentiles (calculation on 1000 
runs))

NTDB, National Trauma Data Bank; SweTrau, Swedish Trauma Registry

Events per free 
parameter

Data set Undertriage logistic 
regression

Overtriage logistic regression Undertriage XGBoost Overtriage XGBoost

10 SweTrau 0.321 [0.259, 0.389] 0.321 [0.299, 0.344] 0.324 [0.258, 0.683] 0.319 [0.057, 0.344]

10 NTDB 0.429 [0.338, 0.79] 0.453 [0.052, 0.501] 0.701 [0.35, 0.808] 0.08 [0.039, 0.494]

25 SweTrau 0.314 [0.257, 0.379] 0.322 [0.3, 0.346] 0.316 [0.258, 0.61] 0.321 [0.09, 0.345]

25 NTDB 0.405 [0.332, 0.771] 0.46 [0.06, 0.499] 0.436 [0.345, 0.792] 0.444 [0.045, 0.498]

100 SweTrau 0.312 [0.254, 0.373] 0.323 [0.301, 0.345] 0.314 [0.255, 0.4] 0.322 [0.291, 0.345]

100 NTDB 0.394 [0.324, 0.735] 0.466 [0.072, 0.503] 0.409 [0.327, 0.79] 0.459 [0.048, 0.497]

1000 NTDB 0.395 [0.327, 0.72] 0.468 [0.078, 0.507] 0.406 [0.328, 0.777] 0.463 [0.05, 0.504]

Fig. 1  Under- and overtriage rates (median, IQR (Q1-Q3), Q1-1,5IQR & Q3 + 1,5IQR) for logistic regression and XGBoost in the SweTrau and NTDB 
cohorts. NTDB, National Trauma Data Bank; SweTrau, Swedish Trauma Registry

Table 3  Median and 2.5 and 97.5 percentiles of difference in 
under- and overtriage rates between learners (calculation on 
1000 runs)

NTDB, National Trauma Data Bank; SweTrau, Swedish Trauma Registry

Events 
per free 
parameter

Data set Difference in 
undertriage LogReg-
XGBoost

Difference in 
overtriage LogReg-
XGBoost

10 SweTrau 0 [− 0.354, 0.025] 0 [− 0.005, 0.265]

10 NTDB − 0.005 [− 0.398, 
0.035]

0.004 [− 0.017, 0.433]

25 SweTrau 0 [− 0.301, 0.015] 0 [− 0.003, 0.238]

25 NTDB  − 0.005 [− 0.39, 0.023] 0.003 [− 0.015, 0.427]

100 SweTrau 0 [− 0.025, 0.005] 0 [− 0.001, 0.008]

100 NTDB 0 [− 0.396, 0.005] 0 [− 0.003, 0.427]

1000 NTDB 0 [− 0.386, 0] 0 [− 0.001, 0.422]
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smaller studies with a limited number of predictors, 
logistic regression performs as well as more advanced 
machine learners [19, 20], whereas for larger studies with 
many predictors, more advanced machine learners may 
have an advantage [14–17]. A recent review including 71 
studies with a median of 19 predictors and 8 events per 
predictor showed no benefits of machine learning over 
logistic regression [18], but the included studies did not 
investigate which factors influenced performance. Fur-
ther studies are needed to establish determinants of the 
performance of different algorithms.

Our results show that static vital parameters and age 
are not sufficient as input parameters to achieve mis-
triage rates in line with the ACS-COT recommenda-
tions. To improve predictive accuracy, vital parameters 
could be encoded differently, for instance, using the New 
Trauma Score (NTS) [33] and shock index [34]. Addi-
tional predictors, such as trauma type, mechanism of 
injury or anatomical location of injury, could also be 
introduced. However, increased model complexity and 
creation of comprehensive data registries need to be bal-
anced against the clinical reality of EMS personnel in the 
prehospital setting.

Identifying the optimal prediction model for trauma 
team activation may enable the development of prehos-
pital and early inhospital decision-making tools to assist 
EMS personnel in field triage. This tool may also reduce 
the prehospital provider interindividual variation in 
the assessment of injury severity, creating a more solid 
trauma team activation field triage system.

For example, a recent study showed that only 50% of 
seriously injured patients in Norway are treated by anaes-
thesiology-manned prehospital critical care teams [35]. 

Prehospital undertriage may lead to negative patient out-
comes. Analysing selected dispatch data with previously 
described learners may assist dispatch centres in cor-
rectly dispatching a high tier unit to a trauma scene with 
severely injured patients.

Limitations
Neither SweTrau nor NTDB are perfect populations for 
developing a trauma triage tool. The ideal population 
would have been all trauma cases reported to the EMS. 
Additionally, we excluded data with missing observa-
tions. Thus, there were possible sources of selection bias; 
however, as our objective was to compare two learners, 
this bias is unlikely to have any major impact on our find-
ings. If the goal was to develop a new model, we would 
recommend a different approach for handling missing 
observations, such as multiple imputation.

Encoding of data as categorical variables implies loss of 
information and could introduce bias. For instance, it is 
unlikely that the prognosis of an individual would change 
drastically on the day of the 57th birthday. However, cat-
egorical encoding is the norm in published models for 
prehospital trauma triage, as it can be difficult to count 
an exact respiratory rate or GCS in a stressful situation.

There are other machine learners for binary classifica-
tion that we could have assessed, but we used XGBoost 
because of its current popularity and applicability. Our 
results cannot be generalized to other machine learn-
ers and are limited to XGBoost, as it is implemented in 
the R package with the same name. It is possible that 
more extensive hyperparameter tuning, including data 
re-balancing techniques, would have improved the per-
formance of both learners, but the use of the R package 

Fig. 2  Differences in under- and overtriage rates between learners (median, IQR (Q1-Q3), Q1-1,5IQR & Q3 + 1,5IQR) in the SweTrau and NTDB 
cohorts. NTDB, National Trauma Data Bank; SweTrau, Swedish Trauma Registry
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MLR allowed us to replicate the analysis process in all 
bootstrap samples. This would not have been possible if 
we had tuned hyperparameters manually.

Conclusion
The results showed that the advanced machine learner 
XGBoost did not bring any added value over logistic 
regression for prehospital trauma triage. In contrast, we 
observed that this advanced machine learner required 
larger data sets to produce reliable results. Thus, when 
predictors are few and categorical, logistic regres-
sion may be preferable to this more advanced machine 
learner.
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