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Abstract

Background: Many models are published which predict outcomes in hospitalized COVID-19 patients. The gener-
alizability of many is unknown. We evaluated the performance of selected models from the literature and our own
models to predict outcomes in patients at our institution.

Methods: We searched the literature for models predicting outcomes in inpatients with COVID-19. We produced
models of mortality or criticality (mortality or ICU admission) in a development cohort. We tested external models
which provided sufficient information and our models using a test cohort of our most recent patients. The perfor-
mance of models was compared using the area under the receiver operator curve (AUQ).

Results: Our literature review yielded 41 papers. Of those, 8 were found to have sufficient documentation and
concordance with features available in our cohort to implement in our test cohort. All models were from Chinese
patients. One model predicted criticality and seven mortality. Tested against the test cohort, internal models had an
AUC of 0.84 (0.74-0.94) for mortality and 0.83 (0.76-0.90) for criticality. The best external model had an AUC of 0.89
(0.82-0.96) using three variables, another an AUC of 0.84 (0.78-0.91) using ten variables. AUC's ranged from 0.68 to
0.89. On average, models tested were unable to produce predictions in 27% of patients due to missing lab data.

Conclusion: Despite differences in pandemic timeline, race, and socio-cultural healthcare context some models
derived in China performed well. For healthcare organizations considering implementation of an external model|,
concordance between the features used in the model and features available in their own patients may be important.
Analysis of both local and external models should be done to help decide on what prediction method is used to
provide clinical decision support to clinicians treating COVID-19 patients as well as what lab tests should be included
in order sets.
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Background

The coronavirus disease 2019 (COVID-19) caused by

the SARS-CoV-2 has been devastating compared to

other viruses (seasonal, avian and swine influenza), in

regard to both the morbidity and mortality and its eco-
*Correspondence: BillG@uicedu nomic impact, despite advancements in medical care
! Departments of Medicine and Pharmacy Systems, Outcomes and Policy, since the Spanish Flu of 1918 [1]. COVID-19 has had
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US economy despite assistance from the US Federal
government, via the CARES Act [2] and other funding
programs.

The COVID-19 pandemic occurred quickly and was
rapidly followed by a massive production of academic
output, including prediction models for a variety of clini-
cal outcomes; the initial models for hospital outcomes
came from the city of Wuhan in the Hubei province of
China, where the initial cases were discovered. From
there, models around the globe surged and were likely
integrated into many hospital guidelines. However, it is
unclear if those models could be applied to local cohorts.
Having a rapidly available and accurate prediction model
for COVID-19 patients being admitted from the emer-
gency department (ED) would be useful for making
accurate triage and prognostic assessments to inform
decisions regarding treatment and resource allocation.
While knowledge of the likelihood of death in those sent
home from the ED would also be of interest, this requires
longitudinal data which is often not as readily available.
The value of appropriate triage decisions is important,
especially in time when resources are stretched.

The growth in the volume of readily available health-
care data has facilitated the development of artificial
intelligence-based models; however, a significant factor
limiting the utility of dissemination of such models is the
issue of generalizability. For example, the earliest com-
puter-aided decision models evaluating abdominal pain
were not able to be replicated in different institutions [3].
A mortality prediction tool in acute alcoholic pancreatitis
(Ranson’s criteria) [4] developed in a small cohort has a
wide acceptance compared to superior scoring tools [5].

One of the most popular predictions tools in clini-
cal use today is the 2013 ACC/AHA Guideline on the
Assessment of Cardiovascular Risk [6]. This risk tool uni-
formly overestimated risk in non-diabetic patients in a
large, multi-ethnic, socioeconomically group of patients
in California [7].

We performed an analysis of how well published and
self-developed models would predict clinical outcomes
after admission on a cohort of diverse urban patients in
Chicago. Our self-developed models were trained using
data from our local patient cohort. Published, external
models were not re-trained with our cohort’s data. We
aim to close the gap in the understanding if COVID-19
prediction models on mortality and criticality could be
potentially used in local cohorts despite ethnic, geo-
graphic and timeline differences. We postulate that due
to our incomplete understanding of the pathophysiology,
ethnic, racial and socioeconomic differences by location,
and improving treatment over time, that models may not
predict well in a cohort different than their validation and
development cohorts.
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Methods

University of lllinois Hospital (UIH) Cohort

UIH is a tertiary, academic teaching hospital in Chicago.
The UIC Institutional Review Board approved this study.
All admissions to UIH for COVID-19 positive patients
were reviewed for the time of the first COVID-19 posi-
tive test and the date of admission. If the first positive
COVID-109 test was performed greater than 14 days prior
to admission or greater than 48 h after admission, the
patient was excluded. Patients transferred from another
institution were reviewed for prior COVID-19 testing.
If the COVID-19 test was greater than 14 days before
transfer, the patient was excluded. If the transfer was
not related to any possible COVID-19 symptoms, the
patient was excluded. If the patient was discharged and
then readmitted less than 14 days after the first positive
COVID-19 test, the encounter was included. Patients
were discharged or expired prior to 8/18/20. Pregnant
patients were included.

Since our goal was to assess the predictive power of
our own prediction model as well as some of those in the
literature, we partitioned our data into a training cohort
consisting of the first 60% of patients admitted prior to
5/9/20 and a test cohort consisting of patients admitted
and discharged from 5/9/20 through 8/18/20.

Variable selection was based on a review of the extant
literature and expert opinion. The variables selected are
shown in Table 1. Admission vital signs, laboratory values
and clinical and radiological features were assessed. The
results were the first available up to 24 h after admission.
Two outcomes were evaluated, mortality (death during
hospitalization), and “criticality’;, defined as mortality or
admission to an ICU.

Literature search

We searched for articles published in PubMed, Embase,
Arxiv and medRxiv using the search string: [Prediction]
AND [Human] AND [COVID-19] OR [SARS-COV2]
AND [Clinical Trial] OR [Observational Trial] which
were published before 8/27/2020. Articles were reviewed
to determine whether the models described predicted
our outcomes of interest and whether there was sufficient
concordance and detail provided to implement the model
using our cohort’s data.

Model development

The objective of our model development was to accu-
rately predict patient outcomes using a reduced number
of key input features. A variety of popular machine learn-
ing algorithms were evaluated to classify mortality and
criticality. These algorithms include Linear Regression
[8], Decision Tree [9], Random Forest [10], XGBoost [11],
LightGBM [12], and CatBoost [13]. The training process
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Table 1 Characteristics of the development and test cohorts

Characteristics Development cohort (N=309) Test cohort (N=207) P

Missing Data Missing Data

Outcome variables(N, (%))

Mortality 38 (12.3) 21 (10.1) 045
Criticality 80 (25.9) 46 (22.2) 034
Demographics

Age (Mean, (SD)) 56.5 (16.0) 533 (18.5) 0.008*
Female (%) 49.8 483 0.73
Race (N (%)) 1% 1.4% 022
African American 152 (49.2) 86 (41.5)

Hispanic 37 (12) 25 12.1)

Other, Non- Hispanic 94 (304) 82 (39.6)

White 23 (7.4) Il (5.3)

Vital signs on admission (mean (SD))

Systolic blood pressure 135 (25) 134 (24.7) 0.80
Diastolic blood pressure 783 (15) 779 (14.3) 0.92
Hearth rate 102 2n 97.1 (20.1) 0.70
Respiratory rate 236 (6.9) 22.7 6.6) 0.52
Temperature 375 (1.1 372 (1.0) 0.095
Oxygen saturation 934 (7.5) 97.7 (62.4) 0.16
Clinical and radiological features

BMI, mean (SD) 323 (10.5) 320 (9.6) 0.56
GCS, mean (SD) 14.9 (0.8) 0% 14.8 (1.2 1% 0.28
Dyspnea (N (%)) 125 (40.5) 90 (43.5) 049
Coma (N (%)) 3 (1) 1 (0.5) 0.54
Pregnant (N (%)) 10 (3.2) 14 6.8) 0.062
Abnormal chest X-ray (N (%)) 228 (75) 1.9% 136 (74) 10.6%** 0.67
Laboratory findings (mean, (SD)

White blood cells 6.8 (3.0 0% 7.7 (3.9 1% 0.001*
Neutrophiles 52 (3.6) 0% 5.6 (3.7) 34% 0.038*
Lymphocytes 1.1 0.7) 0% 13 (] 3.4% 0.024*
Hemoglobin 13.0 (2.2) 0% 12.7 (2.3) 1% 057
Hematocrit 394 6.3) 0% 379 6.8 1% 0.36
RDW 14.9 ) 0% 151 (2.2) 1% 0.68
Platelets 215 91) 0% 236 (105) 1% 0.15
Creatinine 1.8 (3) 0% 19 (2.6) 2.4% 047
Lactic acid 16 (1.6) 233% 1.8 (1.9) 30.4% 0.11
Lactate dehydrogenase 353 (227) 16.5% 386 (521) 27.5%** 0.14
Pro-calcitonin 14 6.7) 16.8% 2.2 (104) 32.9%** 0.12
Troponin | 0.11 0.8) 324% 0.04 (0.1) 31.4% 0.076
B-type natriuretic peptide 527 (1939) 57% 369 (664) 63.8% 0.10
Albumin 37 (0.5 3.9% 36 (0.6) 7.2% 0.009*
ALT 388 (44.4) 3.9% 378 (49.9) 7.2% 0.88
AST 48.2 (58.3) 3.9% 523 (81.3) 7.2% 0.20
Total bilirubin 0.7 0.9 3.9% 0.8 0.7) 7.2% 0.76
Direct bilirubin 0.2 (0.5) 3.9% 0.2 (0.3) 72% 0.57
Creatine kinase 281 471) 63.8% 3071* (22,782) 67.6% 0.012*
C-reactive protein 101 (84) 15.5% 98.6 (86.7) 19.8% 0.46
Interleukin 6 249 (33.9) 75.1% 28.1 (40.2) 87.9%** 017
D-dimer 1.9 (2.6) 40.8% 2.2 (3) 27.5%** 0.46




Galanter et al. BMC Med Inform Decis Mak (2021) 21:224 Page 4 of 18
Table 1 (continued)
Characteristics Development cohort (N=309) Test cohort (N=207) P
Missing Data Missing Data
Ferritin 884 (1562) 7.1% 930 (1360) 17.4%** 045
Medical condition
Hypertension 178 (57.6) 111 (53.6) 0.37
Heart disease 94 (30) 56 (27) 0.41
Stroke 23 (7.4) Il (5.3) 0.34
Diabetes 161 (52.1) 96 (46) 0.20
Asthma 65 (21) 45 (22) 0.85
COPD 24 (7.8 13 6.3) 052
Chronic kidney disease 52 (17) 38 (18) 0.65
End-stage renal disease 30 9.7) 24 (12) 0.49
Cancer 33 (11) 23 (11) 0.88
Transplant 1 (0.3) 1 0.5) 0.78
Human immunodeficiency virus (2.3) 1 0.5) 0.11
Immunosuppression (0.6) (4.3) 0.004*
Sickle cell disease 2) (2.9) 048
Nicotine use 34 () 32 (16) 0.14
Alcohol use 59 (19) 45 (22) 0.46
Substance use 16 (5) 11 (5.3) 0.95
Variables needed for external models only
Blood urea nitrogen, mean (SD) 235 (20.7) 1.9%
eGFR, mean (SD) 709 (40.6) 2.4%
Partial thromboplastin time, mean (SD) 344 6.5) 42.5%

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; COPD, chronic obstructive pulmonary disease; eGFR, estimated glomerular
filtration rate; GCS, Glasgow coma scale; RDW, red blood cell distribution width; SD, standard deviation

" Continuous variables were compared using a t-test and categorical variables, including missingness, were compared using a Chi-square test

" P<0.05 using a chi-square test, development versus test cohort
Significance was set at 0.05

* A single very high, but clinically consistent creatine kinase accounted for the very large mean in this group

uses a combination of step forward feature selection and
parametric grid search. Step forward feature selection is
the process of starting with a single feature and iteratively
adding one additional feature until there is no increase in
model performance. For each step in the feature selec-
tion, a parametric grid search is performed to determine
the optimal parameter set for each model. We use the
area under the receiver operating characteristic curve
(AUCQ) as the evaluation metric.

Statistical analysis of models
No missing data were imputed in our test cohort. Exter-
nal models were included in our analyses if predictions
could be generated for greater than 60% of the patients
based on this missingness. If odds or a point scale was
available, a receiver operator curve was developed and
the area under the curve (AUC) was calculated.
Confidence interval and comparison of ROCs were
performed using DeLong’s method [14]. The training and

test cohorts were compared using Chi-Square tests for
categorical variables and two-sided t-tests for continu-
ous variables using a significance level of P<0.05. The
fraction of missingness for each variable was compared
between the cohorts using the Bonferroni correction to
control the family-wise error rate.

Descriptive statistics were performed using Stata 12 SE
version (StataCorp, TX). Model development was con-
ducted using the Python libraries sklearn (v.0.23.1), Ten-
sorFlow (v.2.2.0), XGBoost (v0.90), LightGBM (v.2.3.1)
and Catboost (v.0.23.1). Statistical analysis was per-
formed using the pROC package in R. This study was
approved by the UIC Institutional Review Board.

Results

UIH cohort characteristics model compilation

A description of the UIH cohorts is shown in Table 1.
There was a total of 516 patients. The training cohort
included the first 309 patients (60%), and the test cohort
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was the subsequent 207 patients (40%). The test cohort
was slightly younger, 53.3 vs 56.5 years [P=0.008].
Though the whole racial distribution was not significantly
different between the cohorts, the proportion of self-
declared black patients was 49% in the training cohort
and 42% in the test cohort. The lymphocyte, white blood
cell and neutrophil counts were significantly higher in the
test cohort.

Though some lab tests were performed on almost all
patients, many tests were performed in a more discre-
tionary fashion. The missingness of some of the more
discretionary tests was higher in the test cohort than in
the training cohort: ferritin 7.1-17.4%, Lactate Dehy-
drogenase (LDH) 16.5-27.5%, Procalcitonin 16.8-32.9%,
Interleukin 6 (IL-6) 75.1-87.9%. D-dimer was missing
less frequently in the test cohort, 40.8—27.5%.

Model compilation summary

Ninety-one abstracts were reviewed. After applying our
inclusion criteria, 41 articles remained. The models and
references are shown in Table 2.

Over 60% of the models (n=26) were derived in China,
11 in Europe, 3 in the US and 2 were multinational. The
most common methods were logistic regression (n=25)
and Cox Regression (n=12).A small number of models
used neural networks and decision trees. Among models
which published an AUC, the AUC’s ranged from 0.74 to
0.98.

Ul health internal model development

Multiple methods of machine learning were assessed to
develop the best prediction model of the training (60%)
cohort. The best models for both mortality and critical-
ity were random forest models, based on the AUC values.
Table 3 lists the key modeling parameters and covari-
ates for the mortality and criticality models. The covari-
ates are listed in the order of importance generated by
the step forward regression. The key parameters for the
random forest models were determined during the grid
search of the development data set. The AUC for the
mortality model in the training cohort was 0.98, and for
criticality it was 0.97.

If model coefficients in the papers in Table 2 were suf-
ficiently described and the model variables were available
for more than 60% of admissions, the model was used
to predict outcomes in the UIH test cohort. Results are
shown in Table 4.

A total of 10 models were assessed using the test
cohort, 8 from the literature and 2 internal. Seven of the
external models used logistic regression and one used a
decision tree. One external model predicted criticality;
the remainder predicted mortality. The most common
variables used in the models were the age (7 models),
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lymphocyte count or lymphocytes/WBC ratio (6 models),
C-reactive protein (CRP) and LDH (4 models), D-dimer
(3 models) and BUN (2 models). The number of features
used in each model ranged from 2 to 11, with a median
of 3.5. These models assessed clinical features and labora-
tory testing upon admission. In addition, 1 model explic-
itly included pregnant patients [19], 2 excluded pregnant
patients [28, 42], and 5 were undetermined [20, 26, 44,
46, 51].

Three of the models, B, G and H [19, 46, 51], had open
access web-based calculators to predict outcomes for
individual patients. One model used a decision tree of
only three variables which is easy for a clinician to use
(A) [42]. Two models used a nomogram to try to simplify
use (D and F) [26, 44].

All external models were trained using cohorts of Chi-
nese patients. Though there were non-Chinese cohort
models in Table 2, none of them provided sufficient
description of their models to be implemented on our
test cohort without retraining.

Common reasons why models were not used were the
lack of availability of the coefficients needed to calculate
a prediction score, lack of concordance between the fea-
tures used in the model and features available in our test
cohort, and outcome data not available in our test cohort
(e.g., mortality).

Figure 1 shows the confidence intervals of the AUC’s
obtained on the test cohort. Table 4 and Fig. 1 show that
the best estimate for the AUC ranges from 0.68 for model
G to 0.89 for model C. The internal models have an AUC
of 0.84 for mortality and 0.83 for criticality. The mortality
model with the highest AUC, C, was not statistically dif-
ferent than the UIH mortality model, 0.89 (0.82-0.96) vs
AUC 0.84:(0.74-0.94), [P >0.5].

The confidence intervals range from 0.13 to 0.30. The
difference in performance between the published fit and
that of its performance on our test set varied significantly.
For model B this difference in AUC was only 0.04 and for
model E it was 0.26. The UI Health models were in the
middle with a 0.14 AUC difference.

For all 8 models, the mean values for lab results and
those of the UI Health test cohort are shown in Table 5.
The variables shown were used in at least one model
and were available in five or more of the model cohorts.
Age and CRP were reported in all papers. The creatinine
was reported in seven papers. Though rigorous statisti-
cal testing cannot be performed due to the inability to
obtain the raw data, some of the variables are clinically
significantly different between the cohorts from China
and UIH. The mean CRP at UIH is more than three times
higher than in the external model average, the creatinine
is two-fold higher and the LDH is roughly 1/3 higher.
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Table 3 Internal Model Fit on first 60% of admissions for mortality and criticality

Model Method Key parameter Covariates

Mortality Random forest Number of estimators: 100 Age, diastolic pressure, O2 Sat,
Max depth: 5 BMI, AST, creatinine, CRP. fer-
Minimum sample Split: 3 ritin, platelet, RDW, WBC

Criticality Random forest Number of estimators; 100 Age, 02 Sat, ALT, AST, creati-

Max depth: 5
Minimum sample Split: 2

nine, CRP, ferritin, platelet,
RDW, WBC, neutrophil/lym-
phocyte ratio

ALT, alanine aminotransferase; AST, aspartate aminotransferase; BMI, body mass index; CRP, C-reactive protein; O2 Sat, oxygen saturation; RDW, red blood cell

distribution width; WBC, white blood cell count

Discussion

All the models in Table 1 could not be used to make pre-
dictions on our test cohort for multiple reasons. Without
chart review, symptomology and its duration are difficult
to obtain, excluding some models. Unusual imaging grad-
ing schemes or mandatory CT scans were not available in
our cohort. Some studies used labs that were not ordered
frequently in our hospital. Lack of longitudinal follow up
limited the use of timed mortality, i.e., 30-day etc. These
issues, along with the lack of well described coefficients
of models produced the inability to use models except for
the 8 models in Table 1.

The features used in the models were surprisingly
diverse. The number of variables in each model ranged
from 2 through 11, with 19 different variables across the
studies. The most common variables used were age, lym-
phocyte count, CRP and LDH. It is surprising that only
7 of the 10 models used age as a predicting variable, and
the 3 models that did not use it did not perform well. In
large multi-site cohorts examined in Britain [56], the US
[57] and internationally [58], age was a strong predictor
of mortality.

Three of the external models performed very well, with
AUC’s of 0.84-0.89. This demonstrates that although the
patients were geographically distant, ethnically different,
in different health systems and cultures, and at different
times during the pandemic, reasonable prediction was
possible. Our initial hypothesis was that these models
would not work well, but this was not the case in all the
models.

It is likely that some of the models may have had better
performance if retrained using our local cohort, but this
was not done as the purpose was to see how they worked
“out of the box” This appeared to be the intent of many
of the authors of the published models as evidenced by
the publishing of web calculators, nomograms and deci-
sion trees. One of the issues which may cause worse or
better performance in a model is that the outcomes have
been found to be a function of time during the pandemic,

not just patient factors, with improving outcomes more
recently [59, 60].

Models A, F, G and H were also evaluated in a review
and cohort prediction comparison by Gupta et al. [61]
using their cohort of 440 patients from London with a
mortality rate of around 28%. For Models F, G and H, the
AUC:s in our cohort were slightly different than in the
London Cohort [61] respectively, model F, 0.84 vs. 0.76,
model G, 0.68 vs. 0.74 and model H, 0.72 vs. 0.69.

Review of the characteristics of the cohorts in Table 5
is instructive in understanding why some of the models
did not perform well. Model A is a decision tree based
on only 3 features, CRP, LDH and the percentage of lym-
phocytes. The first decision node suggests mortality if the
LDH is greater than 365 U/L. In their cohort, the average
LDH was 274 U/L. The average LDH in our test cohort
was 386 however, thus a large portion were predicted to
die at the first node, causing a poor positive predictive
value (PPV). In the London cohort the average LDH was
about the same as ours, 395 U/L, and this model per-
formed poorly in that cohort also [61].

The average LDH was roughly 1/3 higher in our test
cohort than in the average of the cohorts from China. It
is not clear what the reason for this is. In a healthy multi-
ethnic cohort from Hawaii [62], there were at most minor
differences between black, Hispanic, White and Asian
patients in their LDH, suggesting that the differences in
LDH are not likely due to racial factors. It is possible that
a difference in the time of infection to presentation might
explain the difference. The other models which used LDH
predicted well, but this might be in part related to use of
a logistic regression instead of a decision tree.

The average CRP in our cohort is roughly 350% of the
average in the external models, 99 mg/L vs. 27 mg/L. Four
models used the CRP and only one model performed
well, model C. The creatinine was significantly higher
in our cohort than in any of the derivation cohorts and
as well as the average of the studies, 0.84 mg/dL. Only
one model used the creatinine, model H. Its derivation
cohort average creatinine was 0.72 mg/dL. Thus, model
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Fig. 1 Area under the curve (AUC) confidence intervals for Table 4 models
Table 5 Values of the most common variables in the 8 external models and the test cohort
Characteristics Age (N=38) CRP (mg/L) Cr (mg/dl) LDH (U/L) Lymph (1000/ Lymph/WBC Neut (1000/uL)
(N=8) (N=7) (N=6) uL) (N=6) (N=6) (N=4)
Model cohort
A 58.8 26.3* N/A 274 N/A 0.14 N/A
B 48.9 348 0.86 314 1.4 N/A 4.1
C 56.5 21.1 1.08 148 N/A 0.24 N/A
D 65.0 225 0.78 272 1.1 0.19 4
E 65.0 6.2 0.76 N/A 13 023 39
F 62.0 64.5 0.83 362 0.8 0.11 N/A
G 63.5 41.3 0.84 345 0.9 0.1 N/A
H 61.0 2.7 0.72 N/A 14 N/A 35
Total (Mean, 60.1 (5.4) 274 (19.8) 0.84 (0.12) 286 (77) 1.1(0.3) 18% (5) 39(03)
(SD))
UIH cohort**
Mean (SD) 53.3(18.5) 98.6 (86.7) 1.93(2.63) 386 (521) 1.3(1) 18% (11) 5.8(3.6)
Median (IQR) 55 (40-67) 75.2 (32-146) 1.02 (0.8-1.6) 297 (230-417) 1.1(0.7-1.5) 16% (10-24) 4.7 (3.3-7.3)

" Bolded, italicized, underlined values represent variables used in the final models

" These values are for the entire cohort, validate and test, N=516

Cr creatinine, CRP C reactive peptide, IQR interquartile range, LDH lactate dehydrogenase, Neut neutrophile count, Lymph lymphocyte count, Lymph/WBC lymphocyte

to white blood cell ratio, SD standard deviation, UIH University of Illinois Hospital

H used both the CRP and creatinine, helping explain
its poor performance. For creatinine, there are studies
showing socioeconomic and ethnic variations in chronic
kidney disease [63] with one systematic review showing
the prevalence of chronic kidney disease in China was
less than a fourth of the rate in the US [64]. The higher

creatinine in the test cohort may not be related only to
differences in illness at presentation, but rather differ-
ences in the prevalence of CKD.

It is not fully clear why the models produced at UIH
using our training cohort did not perform better on
our test cohort, though there are some likely factors.
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The AUC for mortality decreased from 0.98 to 0.84
and for criticality, from 0.97 to 0.83. In analysis of the
entire cohort, we were able to determine that the mor-
tality and criticality were associated with the admission
date. This is consistent with publications showing an
improved mortality rate over time [59, 60]. The WBC,
lymphocytes and neutrophils were not all used in each
model and all went up in the test cohort. Thus, it is pos-
sible that some variable not in the models changed over
time, producing a worse fit compared to the first 60% of
patients.

The number of cases for which a model is unable to
generate a prediction due to missing data is an impor-
tant practical consideration for model implementation.
The fraction of the test cohort for which predictions
could not be generated due to missingness ranged
between 17 and 31% for external models. The UI Health
models could not generate predictions in 27% of the
patients. Though retrospectively missing data can be
imputed, this is not so easy in real time by clinicians
during patient care, so was not done. This demonstrates
non standardized test ordering, which is not surprising
as our understanding of what is useful and necessary
for testing in suspected COVID patients has evolved.

It is interesting to note that many of the tests which
have been used commonly in these and other models
were missed more frequently in the test cohort than the
earlier development cohort. Ferritin 17.4% from 7.1%,
LDH 27.5% from 16.5%. It is not clear why these tests
were ordered less over time, particularly LDH with
many publications demonstrated its prognostic power
(15, 16, 21, 22, 25, 27, 42-45, 50, 52, 53]. It is possible
that the ordering of these inflammatory prognostic
markers [65] decreased as clinicians’ confidence with
clinical prognosis improved.

D-dimer on the other hand was missing less fre-
quently in the test cohort, 27.5% from 40.8%. This dif-
ference may be due to an increased concern for venous
thromboembolism in COVID 19 infections [66] which
developed over time.

An important question is what model to use to pro-
vide prognostic information to clinicians. Using your
own data to inform future care is consistent with a
learning health system [67]. The ideal situation is that
clinical decision support (CDS) could supply the best
prediction for a patient based on the most recent trends
at the time. Another reason to use your own data, espe-
cially with COVID-19, is that the disease, treatment
and outcomes are likely to change over time [59, 60],
while the models in the literature are static. An addi-
tional benefit of using your own data and predictive
models is the ability to see which diagnostic tests are
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most useful prognostically, but are not ordered enough,
leading to more evidenced based order sets.

Our literature search has limitations due to the ina-
bility to ensure that all possible synonyms were used
along with other reasons that the search strategy may
have missed articles. As related to COVID-19, the rate
of discovery and publication is so rapid that many mod-
els were likely published between the time of study
completion and study publication.

Limitations related to our cohort and analysis are first
that this is a single site study, and these models may have
performed differently at other sites. The size of the test
cohort contributed to the relatively large confidence
intervals of the AUC’s, making statistical significance dif-
ficult to prove. We were unable to follow patients con-
sistently after discharge, thus could not measure timed
outcomes like 30-day mortality. Lastly, we could not con-
trol for changes in treatment which have occurred over
time.

Conclusions
Both internal and some external models were found to
work well at predicting mortality in our test cohort. The
3 best external models used at least age, LDH and lym-
phocytes. Inconsistent ordering of lab tests led to the
inability to generate predictions for 27-31% of our cohort
using the 3 best external models and the 2 UIH models.
As not all the external models worked well, it would be
difficult to know which model to use for future admis-
sions at a particular time during the pandemic as treat-
ment and patient mix can change. As an institution’s
own prior patients are most similar to their next group
of patients, using models from local data should be
considered.
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