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Abstract 

Background:  Vietnam is undergoing a fast-aging process that poses potential critical issues for older people and 
central among those is demand for healthcare utilization. However, healthcare utilization, here measured as count 
data, creates challenges for modeling because such data typically has distributions that are skewed with a large mass 
at zero. This study compares empirical econometric strategies for the modeling of healthcare utilization (measured as 
the number of outpatient visits in the last 12 months) and identifies the determinants of healthcare utilization among 
Vietnamese older people based on the best-fitting model identified.

Methods:  Using the Vietnam Household Living Standard Survey in 2006 (N = 2426), nine econometric regression 
models for count data were examined to identify the best-fitting one. We used model selection criteria, statistical 
tests and goodness-of-fit for in-sample model selection. In addition, we conducted 10-fold cross-validation checks to 
examine reliability of the in-sample model selection. Finally, we utilized marginal effects to identify the factors associ-
ated with the number of outpatient visits among Vietnamese older people based on the best-fitting model identified.

Results:  We found strong evidence in favor of hurdle negative binomial model 2 (HNB2) for both in-sample selection 
and 10-fold cross-validation checks. The marginal effect results of the HNB2 showed that ethnicity, region, house-
hold size, health insurance, smoking status, non-communicable diseases, and disability were significantly associated 
with the number of outpatient visits. The predicted probabilities for each count event revealed the distinct trends of 
healthcare utilization among specific groups: at low count events, women and people in the younger age group used 
more healthcare utilization than did men and their counterparts in older age groups, but a reverse trend was found at 
higher count events.

Conclusions:  The high degree of skewness and dispersion that typically characterizes healthcare utilization data 
affects the appropriateness of the econometric models that should be used in modeling such data. In the case of 
Vietnamese older people, our study findings suggest that hurdle negative binomial models should be used in the 
modeling of healthcare utilization given that the data-generating process reflects two different decision-making 
processes.

Keywords:  Count data, Vietnam, Modeling healthcare utilization, Older people, Outpatient visits, Hurdle models, 
Overdispersed data
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Background
Healthcare utilization data, such as the number of 
an individual’s outpatient visits to hospitals, typically 
manifests as count data (observations that have only 
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nonnegative integer values). This data is usually charac-
terized by a substantial point mass at zero, a long right 
tail of individuals who make more use of healthcare, and 
a tendency for the variance to increase with the mean. 
Such datasets pose significant modeling challenges com-
pared to data that is normally distributed, for instance. 
Consequently, modeling healthcare utilization has 
received considerable attention in the field of health eco-
nomics given how important it is to understand the fac-
tors that drive healthcare utilization when making policy. 
Additionally, the choice of econometric models affects 
modeling outcomes including the predicted probability 
of use of healthcare services and the likelihood of being 
extensive users of such services.

In this paper, several models are considered in our anal-
ysis, with the Poisson regression model (PRM), a basic 
model for count data, taken as a starting point. However, 
the Poisson distribution has one major shortfall which 
is inherent in its unique property known as “equidisper-
sion”- a property where the conditional mean and the 
conditional variance are same. Such a property has been 
shown to be too restrictive for modeling healthcare uti-
lization given that count variables often have a variance 
greater than the mean, a condition known as “overdisper-
sion”. One model that addresses this issue is the negative 
binomial regression model (NBRM). The NBRM has a 
built-in parameter that accounts for the overdispersion 
problem thereby making its estimates substantially more 
efficient than those of the PRM.

Two other regression models considered for count data 
are the hurdle regression model (HRM) and the zero-
inflated regression model (ZIM). The former allows for 
zeros and positive observations generated by two dif-
ferent processes. In particular, the HRM reflects two 
different decision-making processes: whether to use 
healthcare or not; and (conditional on the decision of use 
of healthcare) how much care to consume. The HRM can 
be viewed as a principal-agent model, where the princi-
pal (the patient) initiates the first visit to a hospital and 
there together with the agent (the physician) decide on 
the second and subsequent visits [1].

Unlike the HRM which allows for the possibility that 
zeros are generated by a different process from posi-
tive observations, the ZIM, introduced by Mullahy [2] 
and Lambert [3], considers the zeros as being generated 
by two distinct processes namely: structural and sam-
pling processes. The strategy behind the ZIM reflects the 
intuition that there are two latent groups in the popu-
lation—potential users and nonusers. For example, in 
the context of outpatient visits to hospitals, it might be 
reasonable to think that the population comprises two 
types of groups—individuals who would never seek out-
patient services in hospitals and those who would. There 

are therefore two possibilities for observing zeros. Either 
the individual having zero outpatient visits just happened 
not to seek outpatient services during the survey period 
(sampling zeros) or would never do so (structural zeros).

Although the HRM and ZIM can both be viewed as 
two-component finite mixture models, such mixture is of 
a limited form because the zeros are treated in separate 
processes in those count models. Another model known 
as the latent class model (LCM) provides a more general 
finite mixture model which has powerful properties for 
the modeling of healthcare utilization. Unlike the HRM 
and ZIM, the LCM makes no distinction between users 
and non-users of care. Rather, in a case of two latent sub-
populations, it distinguishes two groups as “healthy” and 
“ill” [4]. The LCM allows for heterogeneity along the out-
come distribution by means of complex configurations 
of either observed or unobserved characteristics. The 
LCM for unobserved heterogeneity rests on the assump-
tion that the unobserved heterogeneity which divides 
the population into latent classes is based on individuals’ 
latent long-term health status. Therefore, population het-
erogeneity may not be well captured by proxy variables 
such as self-rated health or chronic health conditions [5]. 
In using these models, researchers are typically inter-
ested in the distinction between extensive margins—zero 
counts versus positive counts (no outpatient visit versus 
at least one outpatient visit)—and intensive margins—
how many positive counts if nonzero counts (how many 
subsequent outpatient visits after the first visit is made).

To date, most studies on modeling healthcare utiliza-
tion using count data have been conducted in developed 
countries and little is known in the context of the devel-
oping world. Given the differences in the healthcare sys-
tems and healthcare behavior in the two worlds, results 
of the studies conducted in developed countries may 
lack relevance or adaptability for developing countries. 
In developing countries, studies on healthcare expendi-
ture, particularly those looking at catastrophic payments 
for healthcare or healthcare payments and poverty, have 
attracted more attention than those of healthcare utiliza-
tion measured as count events. To the best of our knowl-
edge, there has been no study on modeling healthcare 
utilization in developing countries, particularly focus-
ing on older people. This study contributes to empirical 
evidence on the best choice of econometric models for 
count data in developing countries.

The study aims to: (i) identify the model that best 
explains variability in the number of outpatient visits 
by comparing empirical econometric strategies for the 
modeling of healthcare utilization; and (ii) identify the 
determinants of healthcare utilization among Vietnam-
ese older people based on the results of the best-fitting 
model identified. The study examines the effectiveness of 
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the PRM, the NBRM, the HNB model and its extensions, 
the ZIM and its extensions and the LCM.

Institutional background
In line with a rapid demographic transition towards an 
aging society in the world, Vietnam is undergoing a fast 
aging process and is expected to experience the fast-
est aging process in Southeast Asia region [6]. Sturdy 
economic growth since Doi Moi (economic renovation) 
in the late 1980s has resulted in considerable improve-
ment in socio-economic status and the healthcare sys-
tem in Vietnam. In Vietnam, life expectancy at age 60 is 
relatively high, with an expected 25 and 19 more years 
for women and men, respectively [7]. However, these 
extra years consist of an average of seven years living 
with illness/disability for women and five years for men 
[7], leading to a rise in demand for healthcare utilization 
among older people. Particularly, healthcare utilization 
among Vietnamese older people is mostly outpatient 
visits (91.0% for governmental, private and other health 
institutions combined) [7]. Social health insurance (SHI) 
in Vietnam was introduced in 1992, followed by a series 
of reforms, to provide individuals with access to health-
care services and to reduce out-of-pocket (OOP) spend-
ing in fee-for-service. As a result, SHI coverage among 
older people was significantly increased from 43.5% in 
2006 to 75.0% in 2014 and OOP was reduced over time 
[7].

Methods
Data
The data used in this paper was drawn from the 2006 
Vietnam Household Living Standard Survey (VHLSS), 
conducted by the Vietnam General Statistics Office. 
VHLSS, similar to the Living Standard Measurement 
Study, is one of the most commonly used household 
surveys in developing countries. VHLSS is conducted 
every two years and the information collected is used to 
assess living standards of populations in all regions and 
localities across the country. The survey gathers data on 
a variety of topics such as demographic characteristics 
of household members, household income, household 
expenditure, education, health, employment, assets, 
housing facilities, and participation in hunger elimina-
tion and poverty reduction. The VHLSS sampling frame-
work developed in 2006 is based on that of the 1999 Viet 
Nam Housing Population Census. A three-stage stratified 
design method was adopted for the survey sampling.

To date, among waves of the VHLSS conducted, the 
2006 VHLSS contained the richest information on the 
health conditions—disability and non-communicable 
diseases (NCDs)—and lifestyle—smoking of house-
hold members. The final sample size of the 2006 survey 

was 45,945 households including an income survey of 
36,756 households and expenditure survey of 9189 
households. At household level, the survey collected 
information on household income, household expendi-
ture and household size. At the individual level, various 
information on individual characteristics was collected 
including age, gender, ethnicity, education, marital sta-
tus, working status and health conditions. In this study, 
older people (defined as those aged 60 and older) were 
of interest, so we restricted our analysis to a sample of 
2624 people without missing values for our variables of 
interest.

Measurement of variables
Count outcome variable
The count outcome variable was the number of outpa-
tient visits in the last 12  months. Summary statistics 
and frequency distributions are reported in Table 1 and 
Fig. 1, respectively.

Explanatory variables
In selecting explanatory variables, we relied on the 
conceptual framework of the behavioral model of 
health services utilization developed by Andersen [8, 
9]. Developed to understand individuals’ access to 
healthcare services and utilization, the model has been 
widely used in empirical studies to examine determi-
nants of healthcare utilization [10, 11]. The model has 
shown that individuals’ healthcare utilization could be 
influenced by three broad groups of factors including 
predisposing, enabling and need factors [8]. A compre-
hensive discussion on the behavioral model and how 
the three groups of factors are classified is presented 
elsewhere [10]. In addition to these three groups of 
factors, we also controlled for lifestyle factors since it 
has been well documented that unhealthy behaviors 
such as smoking have a negative effect on individuals’ 
health which in turn might influence healthcare seek-
ing behavior. Detailed information of the four groups of 
explanatory variables is described below.

Predisposing variables reflect demographic characteris-
tics of respondents and in this study, these included age, 
age squared, sex, marital status and ethnicity. Enabling 
variables refer to differences in access to healthcare and 
in this study, they comprised log of household size, place 
of residence, region of residence, education, employment 
status, log of household income, SHI, and health sub-
sidy. Need variables capture the need for healthcare and 
these consisted of disability and NCDs. Finally, smoking 
was included as the lifestyle variable. Definitions of the 
explanatory variables are presented in Table 1.
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Regression models for count data
Poisson regression model (PRM)
The PRM assumes that a discrete random depend-
ent variable yi , representing the number of times that 
an event occurs, follows a Poisson distribution with 
mean µi (the expected number of times that the event 
will occur during a given period of time). The PRM is 
defined by the density:

where the conditional mean is defined as:

where xi is the vector of covariates, β is a (k × 1) param-
eter vector of unknown coefficients, and ! is the factorial 
operator [5].

Negative binomial regression model (NBRM)
Following Cameron and Trivedi [5], the NB density for 
a random discrete count outcome y = 0, 1, 2, … can be 
written as:

where Ŵ(.) denotes the gamma function and α > 0 is a 
constant dispersion parameter to be estimated. The first 
two conditional moments of the NBRM are

(1)f
(
yi|xi

)
=

e−µiµ
yi
i

yi!
, for yi = 0, 1, 2, . . . ,

µi = E[yi|xi] = exp
(
x
′
iβ
)
,

(2)

f
(
yi|xi

)
=

Ŵ
(
α−1 + yi

)

Ŵ
(
α−1

)
Ŵ(yi + 1)

(
α−1

α−1 + ui

)α−1

(
ui

α−1 + ui

)yi

for α > 0,

Table 1  Definition of the selected variables

S.D. denotes standard deviation

Variable Definition Mean S.D

Outpatient visits Number of outpatient visits in the last 12 months 4.336 6.437

Age Age in years 71.465 7.977

Sex Male = 0; female = 1 0.599 0.490

Ethnicity Non-Kinh people = 0; Kinh people = 1 0.894 0.307

Household size Log of household size 1.251 0.567

Place of residence Rural = 0; urban = 1 0.262 0.439

Red River Delta = 1, otherwise = 0 0.233 0.423

East Northern Mountainous areas = 1, otherwise = 0 0.098 0.298

West Northern Mountainous areas = 1, otherwise = 0 0.024 0.153

North Central Coast = 1, otherwise = 0 0.098 0.298

South Central Coast = 1, otherwise = 0 0.122 0.328

Central Highlands = 1, otherwise = 0 0.044 0.024

Southeast = 1, otherwise = 0 0.135 0.342

Mekong Delta = 1, otherwise = 0 0.245 0.430

Marital status Married = 0; single = 1 0.405 0.491

Social health insurance No health insurance = 0; has health insurance = 1 0.549 0.497

Health subsidy No health subsidy = 0; received health subsidy = 1 0.587 0.493

Employment status Not working = 0; working = 1 0.424 0.494

Education Education of respondents in years 4.075 3.642

Household income Log of household income 10.017 0.878

Smoking Not smoking = 0; smoking = 1 0.323 0.468

Non-communicable diseases (NCDs) No NCD = 0; having at least one NCD = 1 0.356 0.479

Disability No disability = 0; having at least one disability = 1 0.285 0.452

Fig. 1  The frequency distribution of outpatient visits
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The above specification corresponds to the most used 
version of the NBRM known as the negative binomial 2 
(NB2). A less used version of the NBRM, termed as the 
negative binomial 1 (NB1), maintains the same specifica-
tion of the conditional mean as in NB2 but specifies the 
conditional variance as linear in the mean.

Hurdle regression model (HRM)
In the HRM for count data, proposed by Mullahy 
[12], zero and positive parts can be estimated sepa-
rately using two different densities: f1(.) and f2(.) . Spe-
cifically, the zero part is determined by f1(.) , such that 
Pr

(
yi = 0

)
= f1(0) , while the positive part determin-

ing the amount of healthcare usage is specified by f2(.) , 
such that the probability of observing y, for y > 0, is 
f2
(
yi|yi > 0

)
= f2

(
yi
)
/
{
1− f2(0)

}
 . In practice, the most 

common choice for f1(.) is logit model, which is used 
here. The typical choice for f2(.) is usually either a trun-
cated-at-zero Poisson or negative binomial (NB). The 
probability function of the HRM can be written as:

where f1(0|xi) = exp(xiβ)
1+exp(xiβ)

.
For the hurdle Poisson model (HPM) specification, 

f2(0|xi) = exp (−µi) = exp
(
−x

′
iγ
)
 and f2

(
ji|xi

)
 is speci-

fied as the standard PRM described in Eq. (1). As for the 
hurdle negative binomial model (HNB), 
f2(0|xi) = (1+ αµi)

−1/α and f2
(
j|xi

)
 corresponds to the 

NBRM described in Eq.  (2). The conditional mean of 
Eq. (3) is given by:

where µ2(xi) is the conditional mean of the second part.

Zero‑inflated regression models (ZIM)
If the probability of being potential non-users is q, then 
(1-q) is the probability of being potential users. The prob-
ability function of the ZIM can be defined as [13]:

E[yi|xi] = ui = exp
(
x
′
iβ
)

V [yi|xi] = ui + αu2i .

V [yi|xi] = ui + αui.

(3)Pr
(
yi = j|xi

)
=

{
f1(0|xi) if j = 0
1−f1(0|xi)
1−f2(0|xi) f2

(
j|xi

)
if j > 0,

E[yi|xi] =
1− f1(0|xi)
1− f2(0|xi)

µ2(xi),

where f2(.) is the density of either the PRM or NBRM. In 
Eq.  (4), positive counts arise only from the process that 
generates users, while zeros arise from both processes. 
For the zero-inflated Poisson (ZIP) specification, 
f2(0) = exp(−µi) = exp

(
−x

′
iγ
)
 and f2

(
j|xi

)
 corresponds 

to the standard PRM described in Eq. (1). In the case of 
zero-inflated negative binomial 2 (ZINB2), 
f2(0) = (1+ αµ)−1/α and f2

(
j|xi

)
 corresponds to the 

NBRM described in Eq. (2).

Latent class models (LCM)
A random outcome variable, y, is drawn from one of C 
distributions, with probability πc  of being drawn from 
that distribution, such that 0 ≤ πc ≤ 1 and 

∑C
c=1 πc = 1 . 

Then, the density function for a C-component finite mix-
ture is defined as:

where fc(yi|xi; θc) are the density for class or component 
c (c = 1, 2, …, C) and θc are the parameters of the distribu-
tions fc(.) [14–16].

Common choices for distributions of count data are the 
NB, which is used here. The latent class NB2 (LCNB2) 
model assumes that each of the component distributions 
follows a NB2 model with mean µc,i and overdispersion 
αc . For an individual in class c, the LCNB2 with gamma 
density for an outcome y can be expressed as a density 
function:

where θc = (αc,βc) and µc,i = exp
(
x
′
iβc

)
 [13]. In this 

model, (αc,βc) are unrestricted across latent classes. The 
expected value of the outcome, yi , given covariates xi , is:

(4)Pr[yi = j|xi] =
{
q + (1− q)f2(0|xi)ifj = 0

(1− q)f2
(
j|xi

)
ifj > 0,

(5)

f
(
yi|xi; θ1, θ2, . . . , θC ;π1,π2, . . . ,πC

)
=

C∑

c=1

πcfc(yi|xi; θc),

(6)

fc
(
yi|xi; θc

)
=

Ŵ
(
α−1
c + yi

)

Ŵ

(
α−1
c

)
Ŵ(yi + 1)

(
α−1
c

α−1
c + uc,i

)α−1
c

(
uc,i

α−1
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,

E
(
yi|xi

)
=

C∑

c=1

πcµc,i.
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Identification of the best‑fitting model
In this section, we describe a three-step procedure used 
to identify the best-fitting model among the count mod-
els considered in the study. First, model specifications 
were examined using Ramsey’s Regression Specification 
Error Test (RESET). We then used statistical tests and 
goodness-of-fit measures for performance evaluation of 
in-sample selection. Lastly, we conducted 10-fold cross-
validation checks to examine reliability of the in-sam-
ple model selection. In sum, we defined the best-fitting 
model as the one whose specification was correctly speci-
fied, and performance was the best in terms of model fit 
for both in- and out-of-sample selections. Details on how 
each procedure is conducted are provided in the follow-
ing sections.

Model specification tests
Deb et al. [14] demonstrated that choosing wrong model 
specifications might lead to inconsistent estimates of 
parameters and misleading results. We used Ramsey’s 
RESET test to examine specification of the explanatory 
variables in the context of the PRM. In short, the test 
regresses the dependent variable (here, the number of 
outpatient visits) on its predicted values and their powers 
(i.e., the squared, cubed, and fourth-order terms of the 
predicted values), and test whether the coefficients on 
the higher-order terms were jointly significantly differ-
ent from zero. Results of the test provide information on 
whether important variables correlated with high-order 
terms were omitted or not [14]. Detailed information on 
Ramsey’s RESET test can be found in other literature [14, 
17]. Results of the test show that our PRM was correctly 
specified since the test statistic was found to be statisti-
cally insignificant at the conventional p-value = 0.05 (not 
shown here).

In‑sample model selection
Two common approaches are used to evaluate perfor-
mance of count models. The first compares mean pre-
dicted probabilities and observed proportions for each 
count of outpatient visits, while the second uses statisti-
cal tests and goodness-of-fit measures for performance 
evaluation among the count models considered. Using 
the first approach, we computed average predicted prob-
abilities for counts 0–20, since those count events accom-
modated most observations of outpatient visits. Then, 
we compared these estimated probabilities with the cor-
responding observed proportions of assigned counts in 
each count model considered. With the second approach, 
we used likelihood ratio (LR) and Vuong tests for model 
discrimination among nested and non-nested models, 

respectively. Basically, the LR test uses − 2 times the dif-
ference in the fitted log-likelihoods of the two nested 
models. Among the selected count models, the NB1 and 
NB2 were nested within the HNB1 and HNB2, respec-
tively. Similarly, the PRM was nested within either the 
HPM or the NBRM, and the ZIP was nested within the 
ZINB2. In addition, the Vuong [18] test was performed to 
evaluate efficiency among non-nested models. The test is 
computed as:

where mi = ln

{
P̂r1(yi|xi)
P̂r2(yi|xi

}
 , 
√
N  is the square root of the 

sample size; mi and smi are the mean and standard devia-
tion of mi , respectively; P̂r1(yi|xi) and P̂r2(yi|xi) are the 
predicted probability of observing yi in the first and the 
second models, respectively. The Vuong test asymptoti-
cally follows a normal distribution, so the first model is 
favored if V is greater than 1.96 and the second model is 
favored if V is smaller than − 1.96 [18]. Wilson [19] has 
shown that using the Vuong test to examine performance 
of the ZIM is invalid, thus we simply used model selec-
tion criteria and goodness-of-fit measures for the ZIM.

Regarding model diagnostics, we computed two com-
monly used model selection criteria: the Akaike infor-
mation criteria (AIC) [20] and the Bayesian information 
criteria (BIC) [21], for comparison among the selected 
count models. The two criteria, found to be robust to 
model misspecification [22], can be computed as:

where ln(L) is the maximized log likelihood and k is the 
number of parameters in the model. Smaller values in 
both AIC and BIC are preferable.

We also computed measures of goodness-of-fit, meas-
ured as root mean square error (RMSE) and mean abso-
lute prediction error (MAPE), to evaluate whether the 
preferred model provided a good fit for the data. The two 
measures of goodness-of-fit capture the bias between 
predicted probabilities and observed proportions for 
each count of the count models considered. Therefore, 
the smaller the bias, the better the model. RMSE and 
MAPE can be computed as:

(7)V =
mi

√
N

smi

,

(8)AIC = −2 ln (L)+ 2k ,

(9)BIC = −2 ln (L)+ ln (N )k ,

(10)RMSE =

√∑N
i=1

(
yi − ŷi

)2

N
,



Page 7 of 14Le et al. BMC Med Inform Decis Mak          (2021) 21:265 	

where ŷi is the predicted probability for each count.

K‑fold cross‑validation
A potential drawback of using heavily parameterized 
models for a given dataset is that such models may be 
overfitting a particular sample of the data and perform-
ing poorly in terms of out-of-sample forecasts. This 
implies that in-sample model performance may not 
always be reliable. K-fold cross-validation checks pro-
vide a useful guide to out-of-sample testing [23, 24]. 
In K-fold cross-validation, the original dataset is ran-
domly divided into K sub-datasets of approximately 
equal sizes. Among the K sub-datasets, a  single sub-
dataset is taken as a validation dataset for model test-
ing, and the remaining  K − 1 sub-datasets are used as 
training. It is important to note that each observation 
in the original dataset is randomly assigned to a sin-
gle sub-dataset and kept in that sub-dataset during the 
cross-validation examination. The cross-validation pro-
cedure is such that K-1 models are first trained using 
the training datasets, and then the estimates of those 
models are evaluated on the validation dataset. The 

(11)MAPE =
∑N

i=1

∣∣(yi − ŷi
)∣∣

N
,

cross-validation process is repeated K times (the folds), 
with each of the K sub-datasets used exactly once as the 
validation data. This means that each sub-dataset has a 
chance to be used one time in the validation part and 
used to train models K-1 times. In practice, there is no 
formal rule for choosing values of K, but the choice of 
K is usually 5 or 10. In this exercise, we used 10-fold 
cross-validation as is the common practice.

Results
Descriptive results
Table  1 presents definitions and summary statistics 
for variables used in the models. On average, in 2006 
a Vietnamese older person used outpatient services 
approximately four times over that year. The variance of 
outpatient visits was 6.4372 = 41.441, roughly 10 times 
the mean of 4.336, suggesting that the data was very 
highly overdispersed relative to the Poisson.

The frequency distribution of outpatient visits is shown 
in Fig. 1. As the figure shows, the frequency distributions 
of outpatient visits are truncated at 20 visits, implying 
that there were some excess zeros. It turns out that the 
2006 VHLSS had probability mass concentrated on a few 
values and was highly skewed to the right tail. In particu-
lar, the proportion of 0 to 20 visits accounted for about 

Fig. 2  Mean predicted probabilities and observed proportions for each count of outpatient visits among count models. Notes: HNB stands for 
the hurdle negative binomial, LCM for the latent class model, NB for the negative binomial, ZIP stands for the zero-inflated Poisson, ZINB for the 
zero-inflated negative binomial, and HPoisson stands for the hurdle Poisson
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97.0% of outpatient visits, most of which were concen-
trated in the 1 to 6 range (about 83.0%, taken together) 
while the zero counts accounted for only about 8.0% of 
the visits. The right tail of distributions of outpatient visit 
was very long, with a maximum value of 104.

In‑sample model selection
Figure  2 presents histograms of mean predicted prob-
abilities and observed proportions for 0 to 20 counts of 
outpatient visits amongst the selected count models. 
The blue bars depict the actual count frequencies in each 
count cell, while the orange bars depict the mean pre-
dicted probabilities. The figure highlights the extent to 
which the probability of each count was over- or under-
predicted, especially for the zeros. In this study, we 
used only the NB2 density for the LCM analysis. Also, 
we did not consider either NB1 density or three-com-
ponent finite mixture models because they had conver-
gence problems despite our attempts of using built-in 
options in Stata (such as difficult option). In addition, the 
results of the ZINB2 model should be taken with caution 
because the number of iterations was limited to 30 due 
to convergence problems. It can be seen that the HNB1, 
HNB2, and HPR models produced exactly the same 
mean predicted probabilities at zero counts as those of 
the actual frequencies, while other count models over-
predicted probabilities of the zero counts, except for the 
PRM, which was under-predicted. Regarding other count 
events, the PRM and its hurdle showed a worse fit, while 
the NBRM and its hurdles showed a better fit relative 
to the PRM and its hurdle. The LCNB2 and the ZINB2 
models also appear to be a better fit than the PRM and its 
hurdle. Overall, it appears that based on the histograms 
the HNB1 and HNB2 were the preferred models. How-
ever, such visualization simply gives us an overall picture 

of the selected model performance at each count event. 
In the following section we further analyze the model 
selection issues using the information criteria and statis-
tical tests.

In Table 2, results of log likelihood, information crite-
ria and goodness-of-fit measures for each count model 
considered are summarized. The PRM had the small-
est log likelihood values at log(L) = 8550, making it the 
worst model. The HNB2 model had the largest log like-
lihood values among all the models considered, suggest-
ing that the HNB2 was the preferred model. The results 
of information criteria also showed strong evidence in 
favor of the HNB2 model because its values in the AIC 
and BIC were the smallest among the compared mod-
els, followed by those in the HNB1 and LCNB2 models, 
respectively. The results of goodness-of-fit also favored 
the HNB2 model, since that model produced the smallest 
bias between the predicted probabilities and the observed 
proportions among the count models considered.

Table 2  Results of log likelihood, information criteria and goodness-of-fit measures

PRM stand for the Poisson regression model, NB is the negative binomial, HNB is the hurdle negative binomial, HPM represents the hurdle Poisson model, ZIP the zero-
inflated Poisson, ZINB is zero-inflated negative binomial, and LCNB the latent class negative binomial. K is the number of parameters estimated for each model, Log(L) 
denotes log likelihood, and RMSE and MAPE stand for root mean square error and mean absolute prediction error, respectively
a indicates the preferred model

Model K Log (L) AIC BIC RMSE MAPE

PRM 34 − 8549.928 17,167.856 17,364.852 1.856 0.531

NB1 35 − 6085.813 12,241.626 12,444.416 1.680 0.433

NB2 35 − 5942.007 11,954.016 12,156.806 1.469 0.372

HNB1 69 − 5751.954 11,641.908 12,041.694 0.491 0.184

HNB2 69 − 5698.735a 11,535.471a 11,935.257a 0.405a 0.160a

HPM 68 − 8314.001 16,764.001 17,157.993 1.818 0.485

ZIP 68 − 8332.979 16,801.958 17,195.95 1.931 0.518

ZINB2 69 − 6218.109 12,574.219 12,974.005 1.667 0.426

LCNB2 72 − 5769.265 11,682.53 12,099.698 0.905 0.253

Table 3  Results of the LR tests among nested count models

LR denotes the likelihood ratio, HNB represents the hurdle negative binomial, 
NB indicates the negative binomial, ZINB means the zero-inflated negative 
binomial, ZIP denotes the zero-inflated Poisson, HPM represents the hurdle 
Poisson model, and PRM means the Poisson regression model
a indicates the preferred model in pair comparison; and χ2(.) means chi-square 
test and the number in the bracket refers to degree of freedom of each model 
considered
* p < 0.05, **p < 0.01, and ***p < 0.001

Pair model Differences in LR 1% critical value

HNB1a vs. NB1 667.718*** χ2(34) = 56.1

HNB2a vs. NB2 486.544*** χ2(34) = 56.1

ZINB2a vs ZIP 4229.739*** χ2(1) = 6.6

HPMa vs. PRM 471.855*** χ2nn = 56.1
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The results of LR tests of the NBRM versus the HNB 
models, the ZINB2 model versus the ZIP model and the 
HPR model versus the PRM are presented in Table  3. 
Here, the NBRM was rejected in favor of the HNB mod-
els for both NB1 and NB2 densities. The ZIP model and 
the PRM were rejected in favor of the ZINB2 and HPR 
models, respectively.

Results of the Vuong tests for non-nested models are 
summarized Table 4. Although we have 10 pairs of non-
nested models, however we were particularly interested 
in comparisons of the HNB2 and other models since 

because the HNB2 model appears preferable to other 
count models considered here, based on the results of 
previous information criteria and LR tests. The Vuong 
test was also found to favor the HNB2 model with the test 
statistic for the HNB2 model against the HNB1 model 
at 3.6, against 12.9 for the HPM, and 4.2 for the LCNB2 
model. Furthermore, those test statistics exceeded the 
critical value of 1.96, suggesting that the HNB2 model 
was a better fit.

The 10‑fold cross‑validation
Figure  3 shows comparison between the NBRM and its 
hurdles. For ease of interpretation, we do not report the 
PRM and its hurdle and the ZIM since these models have 
already been shown to have considerably worse fit than 
the NBRM and its hurdles. In this exercise, the NB2 was 
used as the base model. The vertical bars depict the dif-
ference in log likelihood of the validation sub-dataset 
with respect to the NB2 model, while the horizontal bars 
depict the 10 replications of the selected models. Since 
the 10-fold cross-validation used log likelihoods to com-
pare models in each replication, a model with the high-
est log likelihood relative to the NB2 model is preferred. 
The NB1 model performed worst in each replication, 
but its hurdle performed better than the NB2 model. 
Notably, the HNB2 model performed best in 8 out of 10 
replications.

Marginal effects of the best‑fitting model
The results of the in-sample model selection and 
10-fold cross validation showed that the HNB2 was the 

Table 4  Results of the Vuong tests among non-nested count 
models

HNB denotes the hurdle negative binomial, HPM means the hurdle Poisson 
model, LCNB2 indicates the laten class negative binomial 2, NB means the 
negative binomial and vs. denotes versus
a indicates the preferred models based on the Vuong test results; and bdenotes 
no evidence of one model is superior to the other

Pair model Vuong tests

HNB2a vs. HNB1 3.584

HNB2a vs. HPM 12.883

HNB2a vs. LCNB2 4.233

HNBa vs. HPM 12.848

HNBb vs. LCNB2 0.807

LCNB2a vs. HPM 12.428

LCNB2a vs. NB1 10.043

LCNB2a vs. NB2 9.239

NBa vs. HPM 11.682

NB2a vs. HPM 12.147

Fig. 3  Results of 10-fold cross validation among the NB1, NB2, HNB1, and HNB2. Notes: NB represents the negative binomial and Hurdle-NB 
denotes the hurdle negative binomial
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best-fitting model. In this section, we computed mar-
ginal effects of the HNB2 model to determine the asso-
ciation between the number of outpatient visits and its 
explanatory variables. Marginal effects from the HRM, as 
a whole, require putting the part estimating zero counts 
and the part estimating positive counts together. More 
specifically, the unconditional rate (meaning both zero 
and positive counts being estimated, conditional on the 
explanatory variables) was computed by combining the 
mean rate for those with zero counts and the mean rate 
for those with positive counts.

where E
(
yi|yi > 0, xi

)
= µi

1−(1+αµi)
−1/α  and 

Pr
(
yi = 0|xi

)
= πi . We used the suest and the expression 

() option in margins command to obtain overall marginal 
effects from Eq.  (12). The suest command provides cor-
rect standard errors for the HRM model, since that com-
mand takes into account the fact that although the two 
parts are independently estimated, they are dependent. 
The results of marginal effects of the HNB2 model are 
summarized in Table 5.

The results showed that ethnicity, SHI, NCDs and disa-
bility had a significantly positive effect on the probability 
of visiting hospitals for outpatient services, log household 
size and smoking had a significantly negative effect, while 
the region variable produced mixed results. Specifically, 
the sample average incremental effect of being from the 
Kinh people was 1.09 meaning that Kinh people averaged 
1.09 more outpatient visits than non-Kinh people, with 
other variables held constant. Similarly, those with SHI 
had on average 0.58 more outpatient visits than individu-
als without SHI. Individuals with either NCDs or disabil-
ity had 2.17 and 1.16 more outpatient visits than those 
without NCDs and without disability, respectively. As for 
covariates with negative effects, an additional member of 
household was estimated to decrease the number of out-
patient visits by 0.8, and smokers had 0.94 less outpatient 
visits than non-smokers.

Predicted probabilities of using outpatient visits at specific 
values
Policy-makers and researchers are typically interested 
in key variables that have strong impact on the health 
outcomes. Although the findings of this study showed a 
significant effect of SHI on number of outpatient visits, 
we are particularly interested in examining the health-
care utilization trend among specific groups. It is possible 
that healthcare needs could be varied by age and gender. 
We find predicted probabilities at specific values to be 
particularly illustrative for interpretation of each count 
event for specific groups. In this regard, we examined 

(12)E
(
yi|xi

)
= (1− πi) ∗ E

(
yi|yi > 0, xi

)
,

the predicted probabilities of outpatient visits for two 
groups: those with SHI and those without. In each group, 
we had six age-gender sub-groups including men aged 
60–69, men aged 70–79, men aged 80 +, women aged 
60–69, women aged 70–79 and women aged 80 +. After 
fitting the HNB2, we computed predicted probabilities 
for each count of each hypothetical group selected. In 
this exercise, we presented only the predicted probabili-
ties at count 0–10, since estimates of those count events 
sufficiently showed the healthcare utilization trend 

Table 5  The results of marginal effects of the HNB2 as a whole

HBN2 represents the hurdle negative binomial 2 and S.E. denotes standard 
errors

Variables Coefficient (S.E.) P value

Age 0.154 (0.20) 0.445

Age square − 0.001 (0.00) 0.361

Sex (male-reference)

 Female − 0.685 (0.42) 0.102

Ethnicity (non-Kinh people-reference)

 Kinh people 1.091 (0.385) 0.005

Place of residence (rural areas-reference)

 Urban areas 0.480 (0.381) 0.208

Region of Vietnam (Red River Delta-
reference)

 East Northern Mountainous areas − 0.692 (0.22) 0.002

 West Northern Mountainous areas 0.003 (0.68) 0.997

 North Central Coast − 0.226 (0.27) 0.409

 South Central Coast 0.322 (0.31) 0.303

 Central Highlands 1.218 (0.59) 0.042

 Southeast 3.689 (0.64) 0.000

 Mekong Delta 4.136 (0.49) 0.000

Marital status (married-reference)

 Single 0.182 (0.24) 0.443

Log household size − 0.801 (0.35) 0.024

Social health insurance (no-reference)

 Yes 0.581 (0.28) 0.039

Employment status (no-reference)

 Yes − 0.172 (0.26) 0.517

Education 0.004 (0.05) 0.933

Log household income − 0.064 (0.30) 0.831

Health subsidy (no-reference)

 Yes 0.591 (0.36) 0.100

Smoking (no-reference)

 Yes − 0.941 (0.37) 0.012

Non-communicable diseases (no-refer-
ence)

 Yes 2.167 (0.24) 0.000

Disability (no-reference)

 Yes 1.158 (0.33) 0.000
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among the selected groups. Therefore, the predicted 
probabilities for those counts may not sum up to one.

The predicted probabilities are presented in Table  6 
and visualized in Fig. 4. Overall, it can be seen that the 
probabilities of healthcare utilization decreased when 
number of outpatient visits increase. This result is 
reasonable since an individuals’ health could be man-
aged or under controlled after the first or second visit 
to doctors with probably the exception of severe health 
conditions. In that case, the probabilities of subsequent 
visits for them would be diminished. Readers may 
find that it would be easier to interpret the results for 
groups with and without SHI if number of outpatient 
visits were divided into two parts: count 1–4 and count 
5–10. The reason is that each part showed the distinct 
trends of healthcare utilization among the two groups. 

For the group without SHI at count 1–4, women used 
more healthcare services than men across age groups, 
and people in younger age groups had higher predicted 
probabilities of using healthcare utilization than their 
counterparts in older age groups, regardless of their 
gender. By contrast, the results at count 5–10 showed 
a totally reverse trend as compared to those of count 
1–4.

The results for group with SHI revealed the same pat-
tern of using healthcare utilization as those of group 
without SHI. A possible explanation for such findings on 
gender is that although women, on average, live longer 
than men do, they tend to have poor health than men. 
By contrast, men tend to have chronic diseases that are 
associated with higher rates of mortality than do women. 
Thus, at low count events (e.g., count 1–4), women may 

Table 6  Results of the predicted probabilities at specific count events among groups

SHI means social health insurance, F and M denote female and male, respectively

Groups Number of outpatient visits

0 1 2 3 4 5 6 7 8 9 10

Without SHI

 F60–69 0.044 0.312 0.188 0.125 0.087 0.062 0.045 0.033 0.025 0.019 0.014

 M60–69 0.063 0.271 0.17 0.118 0.086 0.064 0.049 0.038 0.029 0.023 0.018

 F70–79 0.052 0.298 0.182 0.123 0.087 0.063 0.047 0.035 0.026 0.02 0.015

 M70–79 0.074 0.258 0.164 0.115 0.085 0.064 0.049 0.038 0.03 0.024 0.019

 F80+ 0.057 0.301 0.182 0.122 0.086 0.062 0.046 0.034 0.026 0.019 0.015

 M80+ 0.08 0.26 0.164 0.115 0.084 0.063 0.049 0.038 0.029 0.023 0.018

With SHI

 F60–69 0.055 0.279 0.174 0.12 0.087 0.064 0.049 0.037 0.029 0.022 0.017

 M60–69 0.077 0.241 0.156 0.111 0.083 0.064 0.05 0.04 0.032 0.026 0.021

 F70–79 0.065 0.266 0.168 0.117 0.086 0.064 0.049 0.038 0.03 0.023 0.019

 M70–79 0.091 0.228 0.149 0.108 0.081 0.063 0.05 0.04 0.033 0.027 0.022

 F80+ 0.071 0.268 0.168 0.117 0.085 0.064 0.048 0.037 0.029 0.023 0.018

 M80+ 0.099 0.229 0.149 0.107 0.081 0.063 0.05 0.04 0.032 0.026 0.021
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Fig. 4  Visualizations of the predicted probabilities at specific count events among groups. Abbreviation: F denotes females and M means males
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use more healthcare utilization than men, but men may 
need more healthcare at higher count events (e.g., count 
5–10) due to the severity of their health conditions. As 
for comparison of groups with and without SHI, at count 
1–4 people without SHI had more healthcare utiliza-
tion than those with SHI. However, the results showed a 
reverse trend at count 5–10. This finding could be partly 
explained by medical costs for outpatient services as high 
medical costs could present a huge barrier for people 
without SHI to access to healthcare, especially at high 
count events.

Discussion and conclusions
This study has showed strong evidence of overdisper-
sion, but no substantial excess of zeros in the outpatient 
visits data for Viet Nam’s older people. Consequently, 
the PRM performed the worst among the count mod-
els considered and its extensions also showed poor fit. 
Literature has shown that ignoring the overdispersion 
issue leads to deflated standard errors and inflated 
z-values, although estimates of parameters from the 
PRM are still consistent even when the equidispersion 
property is violated [5, 13, 14]. Although the ZINB2 
model had a convergence problem, its results showed 
a better fit than those of the PRM and its extensions. 
In this study, the same set of explanatory variables are 
used to model both structural and sampling zeros, 
which could be a reason for the convergence problems 
with the ZINB2 model [25, 26]. The results of in-sam-
ple selection showed that the NBRM fit the data better 
than did the ZIM. Among the NBRM, the NB2 model 
was preferred over its NB1 counterpart.

The assumption of the NBRM that the process of gen-
erating zeros is the same as that of positive observations 
has been criticized as too restrictive in the modeling of 
healthcare utilization [1]. Critics argue that the decision 
to initiate the first contact to a doctor and the subsequent 
visits may be made in two different processes. As such, 
the LCNB2 undoubtedly fit the data better than did the 
NBRM. However, the in-sample selection results showed 
that the HNB beat all other count models considered. 
Among the HNB, the HNB2 fit the data better than did 
the HNB1.

The results of 10-fold cross-validation showed that the 
HNB2 was the best-fitted model in most replications. 
Comparison among regression models for healthcare 
utilization and other fields has been widely conducted, 
though the results are mixed in the literature. Deb and 
Norton [23] find that the HNB model is more appro-
priate than the PRM and the NBRM for estimation of 
office-based visits, while the NBRM best fits the data for 
emergency department visits. Regarding comparison of 

the HRM and LCM, Jiménez-Martín et al. [28] find that 
the LCM is preferred in the case of general practitioners, 
while the TPM fits the data better than the LCM when 
count outcome is number of visits to specialists. Cam-
eron and Trivedi [5], using a recreational trips data set for 
comparison of the HNB and LCM, find that the HNB fits 
that data better than does the LCM. In line with Cam-
eron and Trivedi’s work, Winkelmann, who uses Pois-
son-log-normal in the second part of the HRM, shows 
that the HNB describes the number of doctor visits bet-
ter than does the LCM [29]. Findings of this study are in 
agreement with the findings of those studies, but in con-
trast with those of studies by Deb and Trivedi [4, 26] and 
Sarma and Simpson [27], which find strong evidence in 
favor of the LCM relative to the HNB.

The results of marginal effects showed that Kinh peo-
ple had more outpatient visits than non-Kinh people. A 
possible explanation is barriers of access to healthcare 
among minority people due to long commutes to health 
institutions in Vietnam [32]. People from larger fami-
lies had fewer outpatient visits than those from smaller 
families. This finding is inconsistent with that of Deb and 
Trivedi [4]. There is no clear explanation for such finding, 
although we speculate that it may indicate unobserved 
financial stress, i.e., people from larger families may 
choose not to go to a hospital because of lack of finances, 
even though a certain level of healthcare is needed. 
Mixed results are found for region of residence, with both 
positive and negative effects on number of outpatient vis-
its. This result is consistent with previous studies, indi-
cating that healthcare utilization varies by sub-regions 
[4, 27]. Having SHI had a positive and significant effect 
on the number of outpatient visits, implying that having 
SHI leads to an increase in demand for outpatient visits. 
A possible explanation could be the ex-ante moral hazard 
in healthcare utilization for non-hospitalized services, 
i.e., people with SHI tend to use more outpatient services 
because they know that insurance companies bear part 
of the cost for such services. Findings of this study are 
in agreement with previous studies, showing that having 
SHI or supplemental health insurance increases individu-
als’ healthcare utilization [5, 30, 31].

Healthcare utilization is responsive to need factors, 
measured by NCDs and disability. Particularly, having at 
least one NCD or disability increased the number of out-
patient visits. This seems reasonable since most NCDs or 
disabilities require care management, rather than hospi-
talization (with the exception of severe conditions). Simi-
lar findings have been found in the literature [1, 4, 30]. 
As for lifestyle variable, smoking had a negative effect 
on number of outpatient visits and this finding contrasts 
with that of Sarma and Simpson [27].
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The study has some limitations, primarily arising from 
the nature of the data. First, this is a cross-sectional 
study, so it cannot provide any causal analysis between 
the determinants and healthcare utilization. Second, the 
cross-sectional study, moreover, only captures whether a 
person used outpatient services at the time of the survey 
conducted, thus we don’t know how individuals’ health-
care utilization behaviors change over times. A longitudi-
nal study is needed to observe such changes in healthcare 
utilization behaviors. Third, we acknowledge the possibil-
ity of recalled bias, since the count outcome used in this 
study was based on self-reported information. Finally, 
this study used the 2006 VHLSS to demonstrate our 
empirical econometric strategies, thus the findings of this 
study may not reflect the current trend of healthcare uti-
lization of Vietnamese older people.

Despite those limitations, this study’s findings lay 
the groundwork for future research on the modeling of 
healthcare utilization in developing countries, and those 
findings could be used to forecast healthcare demand and 
making provisions for healthcare costs. The factors asso-
ciated with number of outpatient visits and the trends 
of healthcare utilization among specific groups could 
serve to inform policy and guide public health interven-
tions to mitigate inequity in healthcare utilization for a 
rapidly aging population. Although older women, on 
average, tend to have poorer health than men, this study 
showed that the intensive margins were higher for men 
than it was for women, suggesting that policy should tar-
get not only women, but also men. Improvement in count 
data in the future is essential to provide an accurate 
understanding of the associated factor with healthcare 
utilization. Some other important variables are encour-
aged to be included in future surveys such as detailed 
types of SHI or complemental health insurance, waiting 
time, travel time, the number of the number of visits to 
a general health professional, the number of visits to a 
specialist, and the number of nights spent as a hospital 
patient. Such variables could provide interesting insights 
and point to essential parameters related to healthcare 
utilization.

Healthcare utilization data come in different forms and 
the high degree of skewness and dispersion that typically 
characterizes such data affects the appropriateness of the 
econometric models that should be used in modeling 
such data. It is hard to conclude one model is superior 
to others. On one hand, the HNB may fit a given dataset 
better if the data-generating process reflects the actual 
two different decision-making processes (whether to use 
healthcare or not, and conditional on the decision of use 
of healthcare, how much care to consume). On the other 

hand, researchers may select LCM for a given dataset if 
latent heterogeneity divides the population into classes 
that may respond differently to changes in covariates. Our 
findings suggest that HNB2 was the best-fitting model 
and that it should be considered for modeling healthcare 
utilization in other contexts with similar characteristics 
as the population examined in this study. Nevertheless, 
researchers are encouraged to deeply investigate alterna-
tive models to avoid model misspecification.
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