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Abstract 

Background:  It is essential for radiologists to communicate actionable findings to the referring clinicians reliably. 
Natural language processing (NLP) has been shown to help identify free-text radiology reports including actionable 
findings. However, the application of recent deep learning techniques to radiology reports, which can improve the 
detection performance, has not been thoroughly examined. Moreover, free-text that clinicians input in the ordering 
form (order information) has seldom been used to identify actionable reports. This study aims to evaluate the benefits 
of two new approaches: (1) bidirectional encoder representations from transformers (BERT), a recent deep learning 
architecture in NLP, and (2) using order information in addition to radiology reports.

Methods:  We performed a binary classification to distinguish actionable reports (i.e., radiology reports tagged as 
actionable in actual radiological practice) from non-actionable ones (those without an actionable tag). 90,923 Japa-
nese radiology reports in our hospital were used, of which 788 (0.87%) were actionable. We evaluated four methods, 
statistical machine learning with logistic regression (LR) and with gradient boosting decision tree (GBDT), and deep 
learning with a bidirectional long short-term memory (LSTM) model and a publicly available Japanese BERT model. 
Each method was used with two different inputs, radiology reports alone and pairs of order information and radiology 
reports. Thus, eight experiments were conducted to examine the performance.

Results:  Without order information, BERT achieved the highest area under the precision-recall curve (AUPRC) of 
0.5138, which showed a statistically significant improvement over LR, GBDT, and LSTM, and the highest area under the 
receiver operating characteristic curve (AUROC) of 0.9516. Simply coupling the order information with the radiology 
reports slightly increased the AUPRC of BERT but did not lead to a statistically significant improvement. This may be 
due to the complexity of clinical decisions made by radiologists.

Conclusions:  BERT was assumed to be useful to detect actionable reports. More sophisticated methods are required 
to use order information effectively.

Keywords:  Radiology reports, Actionable finding, Natural language processing (NLP), Bidirectional encoder 
representations from transformers (BERT), Deep learning
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Background
A radiology report may include an actionable finding that 
is critical if left overlooked by the referring clinician [1]. 
However, clinicians can fail to see mentions of action-
able findings in radiology reports for various reasons, 
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and such failure in communication can delay further 
procedures and impact the prognosis of the patient [2]. 
Therefore, fast and reliable communication on actionable 
findings is essential in clinical practice.

Information technologies are helpful in identifying and 
tracking actionable findings in radiology reports [3, 4]. 
Handling such information in radiology reports seems 
a difficult task because radiology reports usually remain 
unstructured free texts [5]. However, thanks to recently 
developed natural language processing (NLP) technolo-
gies, the detection of radiology reports with actionable 
findings has been achieved, as well as various other tasks 
using radiology reports [6]. The aim of this study is to 
automatically detect reports with actionable findings by 
NLP-technology-based methods.

Many researchers in previous studies have used NLP 
technologies to automatically detect specific findings 
or diseases in radiology reports. Some of them stated 
that their goal is to assist in tracking and surveillance of 
actionable findings, the details of which are summarized 
in Table 1 [7–26]. Some studies in Table 1 have the fol-
lowing features: (1) Multiple or all types of pathological 
entities are covered [7–15]. (2) The ground truth is based 
on clinical decisions, not just on the existence of specific 
expressions in radiology reports [16–18]. These two fea-
tures can both lead to comprehensive detection of radiol-
ogy reports with actionable findings. However, there have 
been no studies that use both features to the best of our 
knowledge.

In our hospital, for better communication and tracking 
of any actionable findings, an actionable tagging function 
was implemented in our radiological reporting system 
and this function has been in operation since September 
9, 2019. Thus, adopting actionable tags for labeling can 
provide a dataset based on clinical decisions for all types 
of pathological entities.

In addition to the free texts in radiology reports, the 
free texts that are input in the ordering form by the refer-
ring clinician (hereafter, order information) may also 
be useful for detecting radiology reports with action-
able findings. That is, if serious and incidental findings 
are present, some gaps can be found between the order 
information and the radiology report.

Several research groups have investigated the auto-
matic detection of actionable findings based on statisti-
cal machine learning [9–11, 16, 18, 22, 25, 26]. However, 
these methods are mainly based on the frequency of 
words in each document, and other rich features such 
as word order and context are hardly taken into account. 
Recently, bidirectional encoder representations from 
transformers (BERT), one of the Transformer networks 
[27, 28], has attracted much attention because it achieves 
state-of-the-art performance in various NLP tasks. For 

better detection of radiology reports with actionable 
findings, BERT is worth using for two reasons: (1) BERT 
can use linguistic knowledge not only from an in-house 
dataset but also from a corpus (a set of documents) for 
pre-training [29]. (2) BERT is able to capture the relation-
ship between two documents [28], which may enable it to 
perform well for a pair comprising order information and 
a radiology report. BERT has been used in several very 
recent studies of classification tasks in radiology reports 
[30, 31]. To the best of our knowledge, however, there 
have been no attempt to use BERT for the automated 
detection of radiology reports with actionable findings.

In this study, we investigate the automated detection of 
radiology reports with actionable findings using BERT.

The contributions of this study are as follows.

•	 Examination of the performance of BERT for the 
automated detection of actionable reports

•	 Investigation of the difference in detection perfor-
mance upon adding order information to the input 
data

Methods
Task description
This study was approved by the institutional review 
board in our hospital, and was conducted in accordance 
with the Declaration of Helsinki.

We define two collective terms: (1) “report body,1” 
referring to the findings and impression in radiology 
reports, and (2) “order information,” referring to the free 
texts that are written in the ordering form by the refer-
ring clinician (e.g., the suspected diseases or indications), 
as explained in Introduction. Our task is thus defined as 
the detection of radiology reports with actionable tags 
using the report body alone, or both the order informa-
tion and the report body.

Clinical data
We obtained 93,215 confirmed radiology reports for 
computed tomography (CT) examinations performed 
at our hospital between September 9, 2019, and April 
30, 2021, all of which were written in Japanese. Next, 
we removed the following radiology reports that were 
not applicable for this study: (1) eight radiology reports 
whose findings and impressions were both registered as 
empty, (2) 254 reports for CT-guided biopsies, and (3) 
2030 reports for CT scans for radiation therapy planning. 

1  For simplicity, we regarded impression as part of the report body, although 
this is different from the definition of the body of the report by the American 
College of Radiology [32].
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Table 1  Summary of previous studies of automatic detection of radiology reports with actionable findings, along with this study

BERT = Bidirectional Encoder Representations from Transformers, CNN = Convolutional Neural Network, GRU = Gated Recurrent Units, LSTM = Long Short-Term 
Memory, and SML = Statistical Machine Learning

Target language Multiple diseases Use of labels in 
clinical practice

Criteria for positive 
class

Target sections in 
radiology reports

Methods

Meng et al. [7] English Yes No Expressions sug-
gesting the need to 
promptly communi-
cate to the referring 
clinician

Impression Existing tool

Helibrun et al. [8] English Yes No Expressions suggest-
ing specific critical 
findings

Impression Existing tool

Carrodeguas et al. [9] English Yes No Follow-up recom-
mendations

Impression SML, LSTM

Yetisgen-Yildiz et al. 
[10]

English Yes No Follow-up recom-
mendations

Order information, 
findings, impression

SML

Yetisgen-Yildiz et al. 
[11]

English Yes No Follow-up recom-
mendations

Order information, 
findings, impression

SML

Dutta et al. [12] English Yes No Follow-up recom-
mendations

Findings, impression, 
recommendation

Existing tool

Lau et al. [13] English Yes No Follow-up recom-
mendations

(Not specified) GRU​

Dang et al. [14] English Yes No Follow-up recom-
mendations

(Not specified) Decision tree

Imai et al. [15] Japanese Yes No Expressions suggest-
ing malignancy

Findings Syntactic analysis

Lou et al. [16] English No Yes Reports pointing 
at indeterminate or 
suspicious upper 
abdominal mass

(Not specified) SML

Danforth et al. [17] English No Yes ICD-9 codes suggest-
ing lung nodules

(Not specified) Rule base

Garla et al. [18] English No Yes Expressions suggest-
ing potentially malig-
nant liver lesions

(Not specified) SML

Farjah et al. [19] English No No Expressions suggest-
ing lung nodules

(Not specified) Existing tool

Gershanik et al. [20] English No No Expressions suggest-
ing lung nodules

Findings, impression Existing tool

Oliveira et al. [21] English No No Expressions suggest-
ing incidental lung 
nodules

Order information, 
findings

Rule base

Pham et al. [22] French No No Expressions suggest-
ing incidentalomas

Order information, 
findings, impression

SML

Mabotuwana et al. 
[23]

English No No Follow-up recom-
mendations

(Not specified) Rule base

Morioka et al. [24] English No No Expressions suggest-
ing abdominal aorta 
aneurysm

(Not specified) Existing tool

Xu et al. [25] English (Not specified) No Follow-up recom-
mendations

Order information, 
findings, impression

SML

Fu et al. [26] English No No Expressions sug-
gesting silent brain 
infarction or white 
matter disease

(Not specified) Rule base, SML, CNN

This study Japanese Yes Yes Reports with an 
actionable tag

Order information, 
findings, impression

SML, LSTM, BERT
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The remaining 90,923 radiology reports corresponded to 
18,388 brain, head, and neck; 64,522 body; 522 cardiac; 
and 5673 musculoskeletal reports; and 3209 reports of 
other CT examinations whose body parts could not be 
determined from the information stored in the Radiology 
Information System (RIS) server. The total was greater 
than the number of reports because some reports men-
tioned more than one part.

Class labeling and data split
Each of the 90,923 radiology reports was defined as 
actionable (positive class) if it had been provided with an 
actionable tag by the diagnosing radiologist, and it was 
otherwise defined as non-actionable (negative class). In 
other words, the gold standard had already been given to 
all of the reports in the clinical practice, which enabled 
a fully supervised document classification without addi-
tional annotations.

The radiologists in our hospital are requested to regard 
image findings as actionable when the findings were not 
supposed to be expected by the referring clinician and 
were potentially critical if left overlooked. Specific cri-
teria for actionable tagging were not determined clearly 
in advance but left to clinical decisions of individual 
radiologists.

The numbers of actionable and non-actionable reports 
were 788 (0.87%) and 90,135 (99.13%), respectively. Then, 
these radiology reports were split randomly into a train-
ing set and a test set in the ratio of 7:3, maintaining the 
same proportions of actionable and non-actionable 
reports in each set, i.e., in the training set, there were 
63,646 reports, where 552 were actionable and 63,094 
were non-actionable, and in the test set, there were 
27,277 reports, where 236 were actionable and 27,041 
were non-actionable.

Preprocessing of radiology reports
To apply machine learning methods in the following 
sections, the same preprocessing was carried out on all 
radiology reports (Fig. 1). First, the contents in the order 
information and report body were respectively concate-
nated into passages. Then, the passages were individually 
tokenized with the SentencePiece model, whose vocabu-
lary size is 32,000 [33, 34].

BERT
BERT is one of the Transformer networks [27, 28]. In 
general, “Transformer” refers to neural networks using 
multiple identical encoder or decoder layers with an 
attention mechanism [35]. Transformer networks have 
outperformed previous convolutional and recurrent neu-
ral networks in NLP tasks [27]. BERT has been proposed 
as a versatile Transformer network. BERT takes one 
or two documents as input, passes them into the inner 
stack of multiple Transformer encoder layers, and char-
acteristically outputs both document-level and token-
level representations. BERT can thus be applied to both 
document-level and token-level classification tasks [28]. 
Various BERT models pre-trained with large corpora are 
publicly available, which has established a new ecosystem 
for pre-training and fine-tuning of NLP models.

We used the Japanese BERT model developed by 
Kikuta [34]. This model is equivalent to “BERT-base” 
with 12 Transformer encoder layers and 768-dimensional 
hidden states. The model has been pre-trained using a 
Japanese Wikipedia corpus tokenized with the Sentence-
Piece tokenizer [33].

We constructed a binary classifier (hereafter, a BERT 
classifier) by adding a single-layer perceptron with soft-
max activation after the pre-trained BERT model. The 

Fig. 1  Preprocessing for each radiology report. Note that subwords recognized by SentencePiece are not precisely substrings of words in the 
grammatical sense, because SentencePiece automatically constructs its vocabulary without a dictionary. For this reason, SentencePiece sometimes 
treats long phrases as one subword or conversely one character as one subword
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perceptron converts a 768-dimensional document-level 
representation vector output by the pre-trained BERT 
model into a two-dimensional vector.

The procedure is shown in Fig.  2. For the detection 
experiment without order information, the sequences 
generated from the report body were fed to the BERT 
classifier. For the detection experiment with order 
information, each sequence pair generated from the 
order information and report body was fed to the BERT 
classifier.

Fine-tuning was performed on all embedding and 
Transformer encoder layers of the BERT model, and 
none of these layers were frozen. The maximum sequence 
length was set to 512 and the batch size2 was set to 256. 
We used Adam optimizer [36] and binary cross-entropy 
loss function.

As in Table  2, the learning rate and the number of 
training epochs were set as follows. The learning rate 

was set to 5.0 × 10−5 for the experiment without order 
information and to 4.0 × 10−5 for the experiment with 
order information. The number of training epochs was 
set to 3 for both experiments. The learning rate and the 
number of training epochs were determined by the grid 
search and five-fold cross-validation using the training 
set. We tried all of the 25 direct groups of five learning 
rates, 1.0 × 10−5, 2.0 × 10−5, 3.0 × 10−5, 4.0 × 10−5, and 
5.0 × 10−5, and the five training epochs, 1 to 5. We calcu-
lated the averages of the area under the precision-recall 
curve (AUPRC) [37, 38] for the five folds, and chose the 
learning rate and the number of training epochs that gave 
the highest average AUPRC.

The learning environment was as follows: AMD EPYC 
7742 64-Core Processor, 2.0 TB memory, Ubuntu 20.04.2 
LTS, NVIDIA A100-SXM4 graphics processing unit 
(GPU) with 40 GB memory × 6, Python 3.8.10, PyTorch 
1.8.1, Torchtext 0.6.0, AllenNLP 2.5.0, PyTorch-Light-
ning 0.7.6, scikit-learn 0.22.2.post1, Transformers 4.6.1, 
Tokenizers 0.10.3, SentencePiece 0.1.95, MLflow 1.17.0, 
and Hydra 0.11.3.

Fig. 2  Detection of actionable reports with BERT (a) without and (b) with order information. Each sequence was fed into the BERT classifier after 
adding special tokens (e.g., [CLS] and [SEP]) and padding with [PAD] tokens that are required by the standard specification of BERT. Generally, BERT 
models output a 512 × 768 hidden state matrix (indicated by **), part of which is a 768-dimensional feature vector for classification tasks (indicated 
by *). We used only the feature vector for classification tasks and discarded the rest of the hidden state matrix, as in the standard procedure

2  The actual batch size was set to 16 owing to the limited computational 
resources. However, an effective batch size of 256 was realized by accumulat-
ing gradients of every 16 batches with the PyTorch-Lightning implementation.
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Baselines: LSTM
As one of the baselines against BERT, we performed 
automated detections of actionable reports using a two-
layer bidirectional long short-term memory (LSTM) 
model followed by a self-attention layer [27, 39]. As in 
BERT, the inputs to the LSTM model were report bodies 
in the experiments without order information and were 
concatenations of order information and report bodies 
in the experiments with order information. The lengths 
of the input documents in a batch were aligned to the 
longest one by adding special padding tokens at the end 
of the other documents in the same batch. Next, each 
document was tokenized and converted into sequences 
of vocabulary IDs using the SentencePiece tokenizer, and 
was then passed into a 768-dimensional embedding layer. 
In short, the preprocessing converted radiology reports 
in a batch into a batch size × length × 768 tensor.

The final layer of the LSTM model outputs two batch 
size × length × 768 tensors corresponding to the forward 
and backward hidden states. We obtained document-
level representations by concatenating the two hidden 
states. The representations were further passed into a 
single-head self-attention layer with the same architec-
ture as proposed by Vaswani et al. [27]. The self-attention 
layer converts the document-level representations to 
a batch size × 1536 matrix by taking the weighted sum 
of the document-level representations along the time 
dimension effectively by considering the importance of 
each token. Then, the matrix was converted into two-
dimensional vectors using a single-layer perceptron with 
softmax activation. The resulting two-dimensional vec-
tors were used as prediction scores. Hereafter, we collec-
tively refer to the LSTM model, the self-attention layer, 
and the perceptron as the “LSTM classifier.”

We trained the LSTM classifier from scratch. The same 
optimizer and loss function as those in BERT were used. 

The batch size was set to 256. As in BERT, the learning 
rate and the number of training epochs were determined 
by grid search and five-fold cross-validation. Table  2 
shows the hyperparameter candidates on which the grid 
search was performed and the hyperparameters that 
were finally chosen for each experiment.

Baselines: statistical machine learning
Logistic regression (LR) [40] and the gradient boost-
ing decision tree (GBDT) [41] were also examined for 
comparison.

Figure  3 shows the procedures. The tokenized report 
body and order information were individually converted 
into term frequency-inverse document frequency (TF-
IDF)-transformed count vectors of uni-, bi-, and trigrams 
(one, two, and three consecutive subwords). The two vec-
tors were concatenated for the detection experiment with 
order information, and only the vector from the report 
body was used for the detection experiment without 
order information.

Here, we describe the details of hyperparameters of 
the LR and GBDT models. For LR, we used Elastic-Net 
regularization [30, 42], which regulates model weights 
with the mixture of L1- and L2-norm regularizations. 
Elastic-Net takes two parameters, C and the L1 ratio. C is 
the reciprocal strength to regularize the model weights, 
and the L1 ratio is the degree of dominance of L1-norm 
regularization. The C and the L1 ratio were determined 
with the grid search and five-fold cross-validation, whose 
candidates and choices are shown in Table 2. For GBDT, 
the tree depth was set to 6. The number of iterations was 
determined by grid search and five-fold cross-validation 
in the same way as LR.

We used the scikit-learn 0.22.2post1 implementation 
for LR and the CatBoost 0.25.1 [43] implementation for 
GBDT.

Table 2  Details of hyperparameter tuning for each method. xe+y means x × 10y and xe−y means x × 10−y

Method Hyper-parameter Candidates Used hyperparameters

Order information (−) Order information (+)

Oversampling 
(−)

Oversampling 
(+)

Oversampling 
(−)

Oversampling 
(+)

LR C 1e− 4, 1e −3, 1e −2, 1e −1, 1.0, 
1e+1, 1e+2, 1e+3, 1e+4

1e+2 1e −2 1.0 1.0

L1 ratio 0.0, 0.5, 1.0 1.0 0.5 1.0 1.0

GBDT Iterations 500, 1,000, 1,500 500 1,000 1,500 1,000

LSTM Learning rate 5e −6, 1e −5, 2e −5, 3e −5 5e −6 1e −5 5e −6 5e −6

Epochs 5, 10, 15, 20, 25, 30 20 5 20 25

BERT Learning rate 1e −5, 2e −5, 3e −5, 4e −5, 5e −5 5e −5 5e −5 4e −5 1e −5

Epochs 1, 2, 3, 4, 5 3 1 3 1
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Performance evaluation
Since this experiment is under a highly imbalanced set-
ting, the performance of each method was mainly eval-
uated with the AUPRC [37, 38], along with the average 
precision score.

We statistically compared the AUPRC and average pre-
cision among LR, GBDT, LSTM, and BERT using Welch’s 
t-test with Bonferroni correction [44]. The bootstrapping 
approach was applied, where 2000 replicates were made, 
and 2000 AUPRCs and average precisions were calcu-
lated for LR, GBDT, LSTM, and BERT. Using the same 
approach, we also statistically compared the AUPRC and 
average precision in the experiments without and with 
order information for each method.

The area under the receiver operating characteristics 
(ROC) curve (AUROC) was also calculated [45, 46]. The 
recall, precision, specificity, and F1 score were also calcu-
lated at the optimal cut-off point of the ROC curve. The 
optimal cut-off point was chosen using the minimum dis-
tance between the ROC curve and the upper left corner 
of the plot.

Scikit-learn 0.22.2.post1 implementation was used for 
calculation of the evaluation metrics, bootstrapping, and 
statistical analysis.

For a more detailed analysis, we divided the truly 
actionable reports in the test set into explicit action-
able reports (those with expressions recommend-
ing follow-up imaging, further clinical investigations, 
or treatments) and implicit ones (those without such 
expressions) by manual review by one radiologist 
(Y.  Nakamura, four years of experience in diagnos-
tic radiology). We also calculated recalls for the mass 
and non-mass subsets of the truly actionable reports in 
the test set since some previous studies have focused 

on actionable reports that point out incidental masses 
or nodules [15–22]. Each of the reports was included 
in the mass subset when its actionable findings were 
determined to involve masses or nodules by manual 
review, otherwise reports were included in the non-
mass subset.

Oversampling
We mainly used the training set mentioned in the pre-
vious section, but its significant class imbalance may 
affect the performance of the automated detection of 
actionable reports. Oversampling positive data can be 
one of the methods to minimize the negative impact of 
the class imbalance [47].

To examine the effectiveness of oversampling, we 
additionally performed experiments using the over-
sampled training set. The oversampled training set was 
created by resampling each actionable radiology report 
ten times and each non-actionable radiology report 
once from the original training set. Hyperparameters 
for each method (LR, GBDT, LSTM, and BERT) and for 
each input policy (using and not using order informa-
tion) were determined using the same strategy as that 
in the experiments without oversampling. The chosen 
hyperparameters are shown in Table 2.

Note that we did not oversample the validation data-
sets during the five-fold cross-validation because we 
intended to search optimal hyperparameters for the 
same positive class ratio as the test set.

To examine the effect of oversampling, we statistically 
compared the AUPRC and average precision obtained 
without and with oversampling in the same way as 
aforementioned.

Fig. 3  Detection of actionable reports with statistical machine learning (a) without and (b) with order information
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Results
Figures  4 and 5 show the precision-recall curves and 
the ROC curves of each method. Table  3 presents the 
performance of each method calculated from precision-
recall curves and optimal cut-off points of ROC curve. 
Table  4 shows the results of statistical analysis to com-
pare the performance characteristics of LR, GBDT, 
LSTM, and BERT. In both of the experiments without 
and with order information, BERT achieved the highest 
AUPRC and average precision among the four methods, 
and it showed a statistically significant improvement over 
the other methods. In particular, the highest AUPRC of 
0.5153 was achieved using BERT with order information. 

The F1 score tended to be higher for the methods with 
higher AUPRCs, average precisions, and AUROCs. The 
highest precision was 0.0634, considerably lower than 
that for recall.

The advantage of using order information was unclear. 
Tables  3 and 5 show that the use of order information 
markedly decreased AUPRC except for BERT. Only 
BERT slightly improved AUPRC with the use of order 
information, but the improvement was not statistically 
significant.

Oversampling showed a limited positive effect on the 
performance. As in Tables  6 and 7, oversampling posi-
tive samples in the training dataset ten times resulted 

Fig. 4  Precision-recall curves for detection of actionable reports achieved by each method
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Fig. 5  ROC curves for detection of actionable reports achieved by each method, with optimal cut-off points shown as open circles

Table 3  Performance in detection of actionable reports with different use of order information for each method

Maximum values are shown in bold

Method Use of order 
information

AUPRC Average precision AUROC F1 score Recall Precision Specificity

LR (−) 0.4574 0.4224 0.9351 0.1052 0.8729 0.0559 0.8715

(+) 0.4218 0.4580 0.8992 0.0763 0.8136 0.0400 0.8296

GBDT (−) 0.4813 0.4816 0.8986 0.0975 0.7881 0.0520 0.8746

(+) 0.4767 0.4771 0.9133 0.0699 0.8305 0.0365 0.8087

LSTM (−) 0.4617 0.4620 0.9331 0.0916 0.8644 0.0484 0.8516

(+) 0.4265 0.4272 0.9277 0.0797 0.8856 0.0417 0.8226

BERT (−) 0.5138 0.5142 0.9516 0.1030 0.9068 0.0546 0.9271
(+) 0.5153 0.5157 0.9497 0.1183 0.8729 0.0634 0.9140
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in statistically significant improvements of AUPRC and 
average precision only for GBDT.

We analyzed further how predictions were made by 
each method. For LR and GBDT, each of the available 
n-grams (i.e., uni-, bi-, and trigrams) were scored using 
coefficients assigned by the LR models or feature impor-
tance assigned by the GBDT models, which reflected the 
n-grams that the LR and GBDT models placed impor-
tance during prediction. N-grams consisting only of 
either Japanese punctuations or Japanese postpositional 
particles were excluded because they were assumed to 
be of little value. The results are shown in Figs. 6 and 7, 
which suggest that the LR and GBDT models tended to 
predict radiology reports as actionable if they contained 
such expressions as “is actionable,” “investigation,” “can-
cer,” or “possibility of cancer.” This suggests that the 
models picked up explicit remarks by radiologists rec-
ommending clinical actions or pointing out cancers. In 

contrast, patterns in keywords used by the LR model 
for non-actionable radiology reports were less clear, 
although some negations such as “is absent” or “not” are 
observed in Fig.  6b. The word “apparent”, which is fre-
quently accompanied by negative findings in Japanese 
radiology reporting, is also present in the top negative 
n-grams in Fig. 6b. These imply that the LR model might 
deduce that radiology reports are non-actionable when 
negative findings predominate. Order information may 
not be used much by the LR and GBDT models because 
few of the n-grams in order information are present in 
Figs. 6 and 7.

Figure  8 is a visualization of the self-attention of the 
LSTM and BERT classifier, highlighting tokens on which 
large importance was placed by each model during pre-
diction. For LSTM, tokens attracting more attention than 
others are shown in red. The attention scores were calcu-
lated by averaging the row vectors of the attention matrix 
generated by the self-attention layer. The attention matrix 
has the length × length size, whose (i, j) element of the 
attention matrix stands for the degree of the i-th token 
attending the j-th token. Thus, averaging the row vec-
tors can clarify which token is attracting more attention 
overall than others. For BERT, tokens directing intensive 
attention toward the [CLS] special token are shown in 
red. The attention scores were calculated by averaging all 
of the attention weight matrices in each of the 12 atten-
tion heads in the last Transformer encoder layer of the 
BERT classifier. In Fig.  8, attention scores tended to be 
higher in expressions such as recommendations or sus-
picions than in anatomical, radiological, or pathological 
terms.

Table  8 shows the recalls of each method for the 
explicit and implicit actionable reports in the test set. 111 

Table 4  Results of statistical analysis to examine the performance of each detection method

Use of order 
information

Metrics Method p values

versus GBDT versus  LSTM versus  BERT

(−) AUPRC LR p < 0.0001 p < 0.0001 p < 0.0001

GBDT – p < 0.0001 p < 0.0001

LSTM – – p < 0.0001

Average precision LR p < 0.0001 p = 0.0002 p < 0.0001

GBDT – p < 0.0001 p < 0.0001

LSTM – – p < 0.0001

( +) AUPRC LR p < 0.0001 p < 0.0001 p < 0.0001

GBDT – p < 0.0001 p < 0.0001

LSTM – – p < 0.0001

Average precision LR p < 0.0001 p < 0.0001 p < 0.0001

GBDT – p < 0.0001 p < 0.0001

LSTM – – p < 0.0001

Table 5  Results of statistical analysis to examine the impact of 
use of order information

Method Metrics p values
Use of order 
information ( −) 
versus ( +)

LR AUPRC p < 0.0001

Average precision p < 0.0001

GBDT AUPRC p < 0.0001

Average precision p < 0.0001

LSTM AUPRC p < 0.0001

Average precision p < 0.0001

BERT AUPRC p = 0.0972

Average precision p = 0.1143
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truly actionable reports (47%) were implicit in the test 
set. Although Figs. 6, 7 and 8 imply that all four methods 
tended to detect actionable findings mainly on the basis 
of the existence of specific expressions, Table  8 shows 
that our methods were able to identify actionable reports 

even if they did not explicitly recommend further medi-
cal procedures.

Five of the implicit actionable reports were detected 
only by BERT and not detected by other methods without 
order information. Figure  9 shows the BERT attention 
visualizations towards three of the reports, all of which 
point out pneumothorax. Although none of the three 
reports include explicit recommendations or emphatic 
expressions to highlight actionable findings, BERT suc-
cessfully predicted them as actionable. Moreover, Fig-
ure 9 shows that BERT has assigned high attention scores 
to a part of the involved disease name “pneumothorax.”

In short, although Figs. 6, 7 and 8 suggest that all four 
methods mainly relied on whether radiology reports con-
tain specific expressions of recommendation, suspicion, 
or negation, Fig. 9 implies further the capability of BERT 
to consider characteristics of diseases.

Table  9 shows the recall for truly actionable reports 
in the test set. The results in Table  9 suggest that our 
methods detected actionable reports regardless of the 
pathological entity of their actionable findings.

As in Table  10, actionable reports accounted for 
0.41% of brain, head, and neck; 1.1% of body; and 0.51% 
of musculoskeletal CT radiology reports in the test set. 
Table 10 also shows that the recall scores for the action-
able musculoskeletal CT reports were greater than 
those for brain, head, and neck CT reports.

Table 6  Performance characteristics of methods in detection of actionable reports without and with oversampling of positive 
samples in the training data

Maximum values for each method are shown in bold

Method Use of order 
information

Oversampling AUPRC Average precision AUROC F1 score

LR ( −) ( −) 0.4574 0.4224 0.9351 0.1052

( +) 0.3166 0.3167 0.8036 0.0474

( +) ( −) 0.4218 0.4580 0.8992 0.0763

( +) 0.4214 0.4221 0.9277 0.1089
GBDT ( −) ( −) 0.4813 0.4816 0.8986 0.0975

( +) 0.4854 0.4858 0.9335 0.0841

( +) ( −) 0.4767 0.4771 0.9133 0.0699

( +) 0.4874 0.4878 0.9307 0.0920
LSTM ( −) ( −) 0.4617 0.4620 0.9331 0.0916

( +) 0.4188 0.4194 0.9262 0.0818

( +) ( −) 0.4265 0.4272 0.9277 0.0797

( +) 0.4086 0.4066 0.9255 0.0795

BERT ( −) ( −) 0.5138 0.5142 0.9516 0.1030

( +) 0.4256 0.4273 0.9464 0.1190
( +) ( −) 0.5153 0.5157 0.9497 0.1183

( +) 0.4549 0.4559 0.9441 0.0953

Table 7  Results of statistical analysis to examine the impact of 
oversampling

Method Use of order 
information

Metrics p values
Oversampling 
( −) versus ( +)

LR ( −) AUPRC p < 0.0001

Average precision p < 0.0001

( +) AUPRC p = 0.7971

Average precision p = 0.9280

GBDT ( −) AUPRC p = 0.0001

Average precision p < 0.0001

( +) AUPRC p < 0.0001

Average precision p < 0.0001

LSTM ( −) AUPRC p < 0.0001

Average precision p < 0.0001

( +) AUPRC p < 0.0001

Average precision p < 0.0001

BERT ( −) AUPRC p < 0.0001

Average Precision p < 0.0001

( +) AUPRC p < 0.0001

Average Precision p < 0.0001
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Discussion
The results show that our method based on BERT out-
performed other deep learning methods and statisti-
cal machine learning methods in distinguishing various 
actionable radiology reports from non-actionable ones. 
The statistical machine learning methods used only limited 
features, because the radiology reports were converted into 
the vectors of the frequency of words as the standard fea-
ture extraction method [40]. In contrast, BERT and LSTM 
presumably captured various features of each radiology 
report including the word order, lexical and syntactic infor-
mation, and context [28, 29]. Moreover, the superiority of 
BERT over LSTM was probably brought about by leverag-
ing knowledge from a large amount of pre-training data.

As in Tables  8 and 9, our BERT-based approach was 
effective in identifying actionable reports regardless of 
the explicitness or the targeted abnormality. The proba-
ble reasons were that (1) implicit actionable reports often 
emphasized the abnormality that was considered action-
able (e.g., “highly suspected to be primary lung cancer” 
for lung nodules) and that (2) the BERT classifiers were 
alert to such emphatic expressions in addition to explicit 
recommendations for follow-up, investigations, or treat-
ment. Furthermore, Figure 9 shows that BERT could still 
identify implicit actionable reports without emphatic 
expressions for the actionable findings, and it could 
assign high attention scores to the names of the action-
able findings. This implies that BERT is capable of learn-
ing to distinguish disease names that are likely to be often 
reported as actionable findings.

As in Table 10, the detection performance was affected 
by the body part of the radiology reports. This is probably 
caused by the difference in the proportion of explicit and 
mass actionable reports for each body part. The action-
able musculoskeletal CT reports were more often explicit 
and targeting mass abnormality than the brain, head, and 
neck CT reports. Tables 8 and 9 suggest that explicit and 
mass actionable reports were comparatively easier to 
identify than implicit and non-mass ones. This was prob-
ably why all four methods achieved higher recalls scores 
for musculoskeletal actionable reports than brain, head, 
and neck ones.

Order information did not necessarily improve the 
performance. This may be because the truly action-
able reports had a too diverse relationship between the 
order information and the report body. We found that 

the actionable tags were not only used to caution about 
findings that were irrelevant to the main purpose of 
ordering (e.g., lung nodules found in a CT examination 
to diagnose fracture). Rather, the actionable tags were 
also given to the radiology reports to highlight unusual 
clinical courses (e.g., liver metastases from colon cancer 
first appeared five years after the surgery of the primary 
lesion) or to prompt immediate treatments (e.g., hemor-
rhage in the nasal septum associated with nasal fracture). 
These complex situations may have not been recognized 
well from our small dataset, even with the ability of BERT 
to capture the relationship between the report body and 
order information.

The low precision (0.0365–0.0634) was another prob-
lem in this study. It was probably mainly due to the low 
positive case ratio (0.87%). Generally, an imbalance of 
occurrences between positive and negative samples 
strongly hampers a binary classification task [48]. This 
negative impact of low positive case ratio was not alle-
viated by simple oversampling, probably because it did 
not provide bring new information to learn characteris-
tics of actionable reports to the models. To overcome this 
limitation, obtaining a larger amount of positive data by 
collecting more radiology reports or data augmentation 
[49] may be an effective solution. Other approaches such 
as cost-sensitive learning [50] or the use of dice loss func-
tion [51] can also be worth trying in future studies.

An important advantage of the proposed approach 
in this study is that the radiology reports were labeled 
with tags provided in actual radiological practice. Gen-
erally, radiologists determine whether specific findings 
are actionable or not on the basis of not only radiologi-
cal imaging but also a comparison with a prior series 
of images, order information, and electronic health 
records. The actionable tag can consequently reflect 
such clinical decisions. Therefore, there is probably 
room for improvement in the performance of auto-
mated detection of actionable reports by using the 
imaging data themselves and the information in elec-
tronic health records. This benefit may not be obtained 
by independent class labeling, referring only to the sen-
tences in the radiology reports.

Using the actionable tag as the label has another 
merit: to identify implicit actionable reports. The 
results of this study suggest that the radiologists may 
have sometimes thought that actionable findings were 

Fig. 6  Top n-grams with positive and negative coefficients with the largest absolute values of the LR models (a) without and (b) with order 
information. Only the top 25 n-grams are shown when more than 25 n-grams had non-zero coefficients. N-grams in order information are marked 
with [Order]. The translation is not given for n-grams too short to make sense. Negation appears among n-grams with the smallest negative 
coefficient

(See figure on next page.)
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Fig. 6  (See legend on previous page.)
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present in the radiological images without explicitly 
urging further clinical examinations or treatments in 
the radiology report. The labeling and detection meth-
ods in this study identified such implicit actionable 
reports, though with lower performance than those for 
explicit ones.

Another advantage of the approach of this study is 
that actionable findings for any pathological entity were 
dealt with, thereby realizing comprehensive detection. 
Since various diseases appear as actionable findings in 

radiological imaging [1, 7–15], this wide coverage is con-
sidered essential for better clinical practice.

The actionable tagging itself can play a certain role in 
the clinical management of actionable reports. None-
theless, introducing an automated detection system for 
actionable findings can make further contributions by 
providing decisions complementary to those of the radi-
ologists. This is because different radiologists have been 
shown to act differently to actionable findings [52], and 
there have been no specific criteria for actionable tagging 
in our hospital thus far.

Fig. 7  Top 25 n-grams with the largest feature importance of GBDT (a) without and (b) with order information. N-grams in order information are 
marked with [Order]. The translation is not given for n-grams too short to make sense

Fig. 8  Examples of LSTM and BERT predictions for two truly actionable reports with visualization of attention scores. (a) is an explicit actionable 
report detected without order information, and (b) is an implicit actionable report detected using order information. (a) Points out hydronephrosis 
due to ureteral calculus in the postoperative CT examination of rectal cancer, and (b) points out a lung nodule pointed out in the CT examination 
more than four years after the operation of esophageal carcinoma. “ < unk > ” stands for out-of-vocabulary subwords that were not recognized by 
the LSTM and BERT classifiers. Subwords with relatively high attention scores are colored red. For luminous visualization, Japanese periods are not 
colored

(See figure on next page.)
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Fig. 8  (See legend on previous page.)
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There are several limitations of the approach of this 
study. First, the BERT model used in this study was not 
specialized in the biomedical domain. The BERT model 
failed to recognize about 1% of the words, most of which 
were abbreviations or uncommon Chinese characters of 
medical terms. Kawazoe et  al. have recently provided a 

BERT model pre-trained with Japanese clinical records, 
which may improve the performance [53]. The pre-train-
ing of BERT with a large Japanese biomedical corpus is 
worthwhile as future work, although it can be costly from 
the viewpoint of computational resources. Second, the 
short period since the launch of actionable tagging in our 

Fig. 9  Three implicit actionable radiology reports pointing out incidental pneumothorax, all of which were successfully identified only by BERT. 
BERT attention scores are visualized in the same way as in Fig. 8. Although none of the three radiology reports emphasize urgency or explicitly 
recommend clinical actions, BERT has given high attention scores to the disease name “pneumothorax.”

Table 8  Recall scores for explicit and implicit truly actionable reports in the test set

The maximum score for each subset is shown in bold

Method LR GBDT LSTM BERT

Use of order information ( −) ( +) ( −) ( +) ( −) ( +) ( −) ( +)

Explicit actionable reports (n = 125) 0.960 0.848 0.872 0.912 0.920 0.936 0.968 0.928

Implicit actionable reports (n = 111) 0.766 0.766 0.685 0.730 0.793 0.820 0.829 0.802
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hospital meant that the amount of data was limited. Con-
tinuous actionable tagging operations can lead to larger 
datasets. Finally, since this study is a single-institution 
study, our classifiers may be adapted to the epidemiology, 
the style of reporting, and the principle on actionable 
findings unique to our hospital. Expanding this study to 
other institutions with similar systems of reporting and 
communication will be valuable future work.

Conclusions
We have investigated the automated detection of radi-
ology reports with actionable findings using BERT. The 
results showed that our method based on BERT is more 
useful for distinguishing various actionable radiology 
reports from non-actionable ones than models based 
on other deep learning methods or  statistical machine 
learning.
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Table 9  Recall scores for truly actionable reports pointing out mass and non-mass abnormalities in the test set

The maximum value for each subset is shown in bold
† Vascular lesions (hemorrhage, thrombosis, infarction, and others) (n = 46), pneumonia (n = 17), pneumothorax (n = 11), hydronephrosis (n = 8), gastrointestinal 
perforation (n = 4), mediastinal emphysema (n = 3), hydrocephalus (n = 2), and other abnormalities (n = 21)

Method LR GBDT LSTM BERT

Use of order information ( −) ( +) ( −) ( +) ( −) ( +) ( −) ( +)

Mass subset (n = 124) 0.935 0.895 0.839 0.855 0.895 0.927 0.927 0.903

Non-mass subset (n = 112) † 0.795 0.714 0.723 0.795 0.821 0.830 0.875 0.830

Table 10  Recall for truly actionable reports in the test set calculated for each body part

Maximum values for each body part are shown in bold

Body part #Actionable reports Recall

Total Implicit Non-mass Order information (−) Order information (+)

LR GBDT LSTM BERT LR GBDT LSTM BERT

Brain, head and neck 23/5584 (0.41%) 10/23 (43.5%) 16/23 (69.6%) 0.739 0.609 0.870 0.870 0.652 0.783 0.826 0.696

Body 206/19,256 (1.1%) 101/206 
(49.0%)

91/206 (44.2%) 0.879 0.801 0.854 0.903 0.835 0.825 0.883 0.888

Cardiac 0/151 (0%) – – – – – – – – – –

Skeletal 9/1758 (0.51%) 1/9 (11.1%) 6/9 (66.7%) 1.000 0.889 1.000 1.000 0.667 1.000 1.000 0.889

Other 0/959 (0%) – – – – – – – – – –
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