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Abstract 

Background:  The liver is an important organ that undertakes the metabolic function of the human body. Liver 
cancer has become one of the cancers with the highest mortality. In clinic, it is an important work to extract the 
liver region accurately before the diagnosis and treatment of liver lesions. However, manual liver segmentation is a 
time-consuming and boring process. Not only that, but the segmentation results usually varies from person to person 
due to different work experience. In order to assist in clinical automatic liver segmentation, this paper proposes a 
U-shaped network with multi-scale attention mechanism for liver organ segmentation in CT images, which is called 
MSA-UNet. Our method makes a new design of U-Net encoder, decoder, skip connection, and context transition 
structure. These structures greatly enhance the feature extraction ability of encoder and the efficiency of decoder to 
recover spatial location information. We have designed many experiments on publicly available datasets to show the 
effectiveness of MSA-UNet. Compared with some other advanced segmentation methods, MSA-UNet finally achieved 
the best segmentation effect, reaching 98.00% dice similarity coefficient (DSC) and 96.08% intersection over union 
(IOU).
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Background
The liver, an important organ, undertakes the metabolic 
functions of the human body. The liver tumors will seri-
ously threaten human lives and health. As mentioned 
in [1], liver cancer will become the sixth most common 
cancer and the fourth leading cause of cancer death in 
the world. Computed tomography (CT) is a commonly 
used diagnostic method in the liver lesions nowadays. CT 
images can reflect the shape, number, location, bound-
ary and other information of liver tumors. Therefore, 
effective segmentation of liver tumor regions based on 
CT imaging technology has an important clinical value. 
Before setting the lesion area, it is very important to 

accurately describe the position of the liver. This process 
is usually manually marked by a professional radiolo-
gists. However, a large amount of image reading work is a 
serious burden for radiologists, and the final assessment 
results of different radiologists may be different due to 
subjective experience. Therefore, there is an urgent clini-
cal need for an algorithm that can accurately and auto-
matically segment the liver.

Recently, deep learning technology has shined in vari-
ous computer vision tasks and achieved exciting results 
[2–7]. It was worth noting that image segmentation algo-
rithms based on convolutional neural networks (CNNs) 
have achieved great success in many medical image 
segmentation tasks [2–4, 8, 9]. Compared with manual 
segmentation methods or traditional semi-automatic 
segmentation algorithms, CNNs have efficient feature 
extraction capability. It can perform fully automatic 
end-to-end training of data without too much empirical 
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parameter settings or complex data pre-processing. In 
the field of image semantic segmentation, Long et al. [10] 
proposed fully convolutional networks (FCNs). FCNs 
contained a convolutional layer and a deconvolutional 
layer instead of a fully connected layer, which was differ-
ent from the traditional image classification network [6, 
7, 11, 12]. Therefore, the network can output segmented 
images with the same resolution size as the original 
image, thus solving the problem of image segmentation 
at the semantic level. Based on the FCNs, Ronneberger 
et  al. [13] proposed U-Net segmentation network. The 
author designed a skip connection structure to transfer 
the feature map extracted by encoder to the correspond-
ing network layer of decoder through cropping and copy-
ing. This allowed U-Net to obtain a more accurate pixel 
positioning which effected and segmented it in the cell 
wall. Inspired by [11], Li et al. [8] proposed a novel hybrid 
tightly connected U-Net—H-DenseUNet, which could be 
decomposed into 2D-DenseUNet and 3D-DenseUNet, 
the former can fully extract features in CT slices Infor-
mation, the latter could effectively aggregate low-level 
features and high-level features. H-DenseUNet has been 
successfully applied in the segmentation task of healthy 
liver tissues and the liver tumor, but it was not easy to 
train and requires high experimental hardware environ-
ment. Milletari et  al. [9] combined the idea of residual 
connection in [12] and proposed a method for 3D medi-
cal image segmentation—V-Net. Benefiting from the abil-
ity of residual connection to efficiently transfer feature 
information in the network layer, V-Net realized fast and 
accurate segmentation of prostate MRI images. In addi-
tion to introducing an effective convolution module in 
U-Net, it is worth considering how to reduce the seman-
tic gap between encoder and decoder. Zhu et  al. [14] 
proposed a new FCN by integrating U-Net and dilated 
dense network for hippocampal subfield segmentation. 
The method could avoid losing the detailed image infor-
mation in the successive down-sampling steps, effectively 
fusing the low-level features with the high-level features. 
Zhou et al. [2] proposed UNet++ to solve the problem 
of excessive semantic gap between encoder and decoder. 
The author redesigned the skip connection structure 
in U-Net and introduced a dense convolution block, so 
that the skip connection can fuse the semantic informa-
tion of different levels of encoder and pass it to decoder, 
significantly reducing the semantic gap between encoder 
and decoder. The residual connection was introduced 
between encoder and decoder. Instead of simply concat-
enating the feature maps from encoder to corresponding 
stage decoder, they were first passed through the convo-
lutional layer chain with residual connections [3]. Then it 
was fused with the feature maps of decoder. Introducing 
the attention mechanism into the convolutional neural 

network structure was also popular [4, 5, 15, 16]. Atten-
tion Gates (AGs) [4] were added to the feature fusion of 
encoder and decoder in U-Net, allowing the model to 
learn to suppress irrelevant regions during training stage 
with only a small amount of parameters, while focusing 
on useful features information, improving the accuracy of 
the network to locate tissues and organs. From the per-
spective of channel and space, different attention mecha-
nisms were designed [5]. The two attention mechanisms 
had their own focus points. Combining the two can 
improve the efficiency of solving semantic segmentation 
problems as a whole.

Based on the above research, we can find that the 
improvement of the convolution module in the original 
U-Net, the introduction of AGs or the redesign of skip 
connections and other methods can all improve the seg-
mentation effect of U-Net to a certain extent. Inspired by 
the above-mentioned literature, our research combined 
the ideas of multi-scale convolution method and atten-
tion mechanism and proposed a method for liver organ 
segmentation in CT images—Multi-scale Attention 
U-Net (MSA-UNet). In general, the main contributions 
of this article are as follows:

1.	 Multi-scale Residual Block (MSRB) was designed. 
MSRB combined a multi-scale convolution mod-
ule and residual connection to improve the feature 
extraction capability of the network. Multi-scale 
Attention Module (MSAM) was proposed, which 
could effectively strengthen useful features and sup-
press useless features. In order to make full use of 
the high-level semantic feature information between 
encoder and decoder, we added a structure called 
Attention Atrous Spatial Pyramid Pooling (AASPP) 
at the end of the encoder. In the skip connection, 
we designed the Residual Attention Skip Mod-
ule (RASM) in order to effectively fuse the feature 
information and reduce the semantic gap between 
encoder and decoder.

2.	 Combining the U-Net structure with the designed 
improved module, the network structure MSA-UNet 
for liver organ segmentation in CT images was pro-
posed.

3.	 Completed experiments on the proposed method on 
the public datasets. At the same time, some advanced 
semantic segmentation methods were selected for 
comparison, and all the experimental results were 
fully analyzed. The experimental results showed that 
our method obtained the best segmentation effect.

The rest of this article is organized as follows: In the 
second section, we first introduced the overview of 
MSA-UNet. Then we introduced in detail some of the 
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new modules we proposed, including MSRB, MSAM, 
AASPP and RASM. In the third section, we declared the 
details of the datasets, the experimental environment, 
and the evaluation metrics used in the experiment. The 
fourth section is the result part. We first performed abla-
tion experiments on some modules in MSA-UNet, and 
proved that each module had a certain effectiveness. 
Then we compared the proposed method with some 
advanced segmentation methods, including the compari-
son of different segmentation metrics and the analysis of 
the difference in training curves. Finally, with some dis-
cussion, we summarized the proposed new liver organ 
segmentation framework MSA-UNet in CT images.

Methods
In this work, based on the U-Net architecture, we com-
bined it with the designed modules, and proposed a 
brand-new MSA-UNet model. The network architec-
ture is shown in Fig.  1. MSA-UNet consists of four 
parts: encoder, decoder, context transition structure 
and skip connection. In the encoder, we used the pro-
posed MSRB as the feature extraction block to improve 
the expressive ability of the convolutional network and 
extract richer deep features. AASPP was an improved 
structure of Atrous Spatial Pyramid Pooling (ASPP) [17]. 

We believe that embedding the attention module can 
further improve ASPP’s ability of capturing contextual 
information, emphasizing useful features, and suppress-
ing useless features. For decoders and skip connections, 
we proposed RASM to fuse low-level feature maps with 
high-level feature maps and perform further decoding 
through methods such as residual connections and atten-
tion mechanisms. Experiments have proved that the vari-
ous modules proposed above have significantly improved 
the performance of U-Net and achieved convincing 
results in liver segmentation tasks. Additionally, we will 
introduce the new modules mentioned in MSA-UNet in 
detail, including MSRB, MSAM, AASPP, RASM.

Multi‑scale residual block
CNNs is a method that can effectively extract the fea-
tures of the input image. Simonyan et al. [6] proved that 
deepening the depth of the network layer can improve 
the final performance of the network. However, as the 
depth of the network layer deepens, the model will face 
problems such as over-fitting, gradient disappearance, 
and increase in computational complexity. These fac-
tors often makes it difficult to improve the performance 
of the model. Szegedy et  al. [7] proposed a multi-scale 
convolution block called Inception module, which used 

Fig. 1  Overview of MSA-UNet architecture. In the encoder, we replaced the sequence of the two convolutional layers in the U-Net structure 
with the proposed MRSB. AASPP was a module used to capture contextual feature information, which was inserted between the encoder and 
the decoder. In addition, we did not use the skip connection in UNet, but used the proposed RASM. At the output of the model, we used a 1 × 1 
convolution and a sigmoid activation function to obtain the final prediction result
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convolution kernels of different scales to extract features 
and stitch each branch to aggregate the multi-scale fea-
tures of the input image. Experiments showed that this 
move greatly improved the performance of the model. 
Nevertheless, the problem of gradient disappearance 
and explosion still existed. In response to this problem, 
He et al. [12] proposed the residual connection in 2016. 
Through the residual connection method, the efficiency 
of information dissemination within the network was sig-
nificantly improved, and the number of parameters was 
reduced, and the phenomenon of gradient disappearance 
and explosion was also avoided. It was worth mentioning 
that [12] made the depth of CNNs breakthrough thou-
sands of layers for the first time. Many of the network 
structures that emerged after this, such as [18, 19], have 
borrowed from the ideas of multi-scale convolution and 
residual connection, and have shown good performance 
in the speed and accuracy of the image classification task 
of ImageNet [20]. In the proposed MSA-UNet network, 
we used a multi-scale residual module (MSRB) in encoder 
part of the network. MSRB was mainly composed of two 
parallel convolution blocks. One branch is 3 × 3 convolu-
tion, and the other branch is composed of two 3 × 3 con-
volutions connected in series. Both of them are used to 
simulate the effect of 5 × 5 convolution to extract features 
of a larger receptive field. This was to prevent the direct 
use of a 5 × 5 convolution kernel, which would cause the 
parameter of the model to explode. In addition, outside 
the MSRB, there was a residual connection that added 
the features extracted from the multi-scale convolution 
block to the original features, which improved the effi-
ciency of information dissemination within the network. 
It should be noted that each of the above convolutions 
was followed by operations such as batch normalization 
[21] and rectified linear unit (RELU) [22] activation. At 
the end of MSRB, we also added the DropBlock layer 
[23] to standardize the network. Due to the small size of 

the medical datasets, the model is likely to cause over-
fitting during the training process. DropBlock [23] was 
a structured drop form, which could effectively prevent 
the over-fitting problem in convolutional networks, and 
has been successfully applied to computer vision tasks. 
Unlike Dropout [24], DropBlock discarded the continu-
ous regions in the layer feature map instead of discarding 
independent random units. The final MSRB structure is 
shown in Fig. 2. We assumed that the input feature maps 
is Fin ∈ RH×W×C , the output of MSRM Fout ∈ RH×W×C ′ 
can be expressed by formula 1:

Here, f k represents the convolution operation with the 
kernel size k × k . d represents DropoutBlock operation. 
⊕ means point-by-point addition operation, [; ] repre-
sents concatenation operation.

Multi‑scale attention module
Attention mechanism can improve the ability of net-
works to suppress useless information. It does not 
require significant changes to the network architecture 
and only needs to introduce a small number of param-
eters to obtain higher accuracy. Oktay et  al. [4] intro-
duced a soft attention mechanism and proposed the AGs 
module. The AGs module suppressed useless information 
in the input image through implicit learning of a train-
able model, thereby highlighting salient features useful 
for specific tasks. Residual Attention Module (RAM) [25] 
was first proposed by Wang et  al. and applied to image 
classification tasks. RAM actually used an hourglass 
structure (down-sampling n times, then up-sampling n 
times) to construct a soft attention mask, which signifi-
cantly improved the accuracy of the image classification 
task. In this article, we designed a multi-scale attention 
module MSAM to optimize feature information. It was 

(1)Fout = d(f 1(Fin)⊕ f 1[f 3(Fin); f
3(f 3(Fin))])

Fig. 2  The proposed MSRB. Here, H, W, and C respectively represent the resolution height, width, and number of channels of the input feature 
maps. C′ represents the number of channels for output feature maps. The yellow square represents the convolution operation (where k represents 
the size of the convolution kernel, f represents the number of convolution kernels, and ×2 represents the convolution operation repeated twice), 
© represents the feature concatenation operation. ⊕ represents the point-by-point addition operation. The red arrow represents the DropBlock 
operation
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similar to RAM in which it compresses the input features 
first and then restored the shape, but the two were not 
the same. As shown in Fig.  3. MSAM first performed 
max-pooling of the input feature maps at different scales, 
then used convolution and bi-linear up-sampling meth-
ods to fuse multi-scale features stepwise, and finally gen-
erated feature attention maps through sigmoid function 
activation. We assumed that the input feature maps is 
Fin ∈ RH×W×C . Firstly, Fin is subjected to three different 
scale max-pooling operations of 2 × 2, 4 × 4, and 8 × 8 to 
obtain three feature maps of Fp2 , Fp4 and Fp8 . Then Fp4 
and Fp8 are added and fused by up-sampling and con-
volution to obtain the feature maps Fp4

′

 . Similarly, Fp2 
and Fp4

′

 are fused in exactly the same way to obtain the 
feature maps Fp2

′

 . Finally, use up-sampling, convolu-
tion, sigmoid function activation and other methods 
to obtain the final feature attention maps, and multiply 
it with the input Fin , and finally obtained output feature 
maps Fout ∈ RH×W×C . It was worth mentioning that the 
size of the feature attention maps obtained by our pro-
posed MSAM was the same as the input Fin . In this way, 
the attention mechanism we proposed could perform 
more comprehensive attention weight distribution from 
the two dimensions of channel and space. The process of 
MSAM can be expressed by formula 2:

Here, Fp2
′

 represents the attention map mentioned 
above. f k represents the convolution operation with the 
kernel size k × k . bk represents a bi-linear interpolation 

(2)Fout = Fin ⊗ σ(f 1(b2(f 3(Fp2′))))

up-sampling operation with an up-sampling scale of 
k × k . ⊗ represents the point-by-point multiplication 
operation. σ represents sigmoid activation function.

Attention atrous spatial pyramid pooling module
The context transition structure between encoder and 
decoder plays a crucial role in the overall performance 
of the model. The PPM [26] structure was proposed to 
capture contextual information. PPM used a multi-scale 
pooling operation to aggregate the input feature maps, 
and then re-fuse the features through convolution and 
up-sampling methods. Different from [17, 26] used ASPP 
to extract contextual information. ASPP performed 
multi-scale feature extraction on the input feature maps 
through dilated convolution operations with different 
dilated factor, and then fused the final multi-scale fea-
tures to output. Compared with the pooling operation, 
the dilated convolution could extract multi-scale features 
without changing the spatial resolution of the feature 
map. And the obtained features could be directly fused 
without the need for subsequent supplementary up-sam-
pling operations to restore the dimensionality as in [26], 
because this may require additional training time and 
memory. Therefore, inspired by [17], we selected ASPP as 
the basic structure for capturing contextual information 
and proposed the AASPP structure. As shown in Fig. 4, 
AASPP combined the attention mechanism with ASPP 
and optimized the feature maps obtained in ASPP. We 
assumed that the input feature map is Fin ∈ RH×W×C , we 
designed four parallel branches to extract features of Fin , 
and each branch was composed of dilated convolutions 

Fig. 3  The proposed MSAM. Here, H, W, and C respectively represent the resolution height, width, and number of channels of the input feature 
maps. The yellow square represents the convolution operation (k represents the size of the convolution kernel, f represents the number of 
convolution kernels), and the green square represents the bi-linear up-sampling operation (×2 represents that the scale of the up-sampling is 2 
times). ⊗ represents the point-by-point multiplication operation. ⊕ represents the point-by-point addition operation
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with different dilated factor. And after each branch, 
MSAM was added to optimize the features. Finally, 
we used the concatenation operation to fuse the fea-
ture maps obtained from the four branches, and then 
obtained the output Fout ∈ RH×W×C through 1X1 con-
volution. The process of AASPP can be expressed by for-
mula 3:

Here, f kr  represents a dilated convolution operation 
with a dilated factor of r and kernel size of k × k . α rep-
resents the MSAM attention mechanism. [; ] represents 
concatenation operation.

Res attention skip module
In U-Net, the role of skip connection was to directly con-
nect the feature mapping between encoder and decoder. 
However, the features obtained by the encoder are cal-
culated early in the network and contain less semantic 
information, which we called low-level features. On the 
other hand, the features of the decoder input the infor-
mation obtained by the deep calculation of the network, 
which we called high-level features.

Obviously, there is a certain semantic gap between low-
level features and high-level features, and directly con-
necting the two may adversely affect the prediction 
results. In response to this problem, Ibtehaz et  al. [3] 
added convolutional layers and residual connections to 
skip connections, and proposed ResPath to reduce the 

(3)
Fout = f 11 [α(f

1
1 (Fin));α(f

3
2 (Fin));α(f

3
4 (Fin));α(f

3
8 (Fin))]

semantic gap between low-level features and high-level 
features. Szegedy et al. [18] proposed the GAU structure, 
letting high-level features containing rich semantic infor-
mation used the global information provided by global 
pooling as a guide to select low-level features. It can be 
seen that adding residual connections to the skip connec-
tion structure and the improvement of the attention 
mechanism were effective. Inspired by the above-men-
tioned literature, we proposed RASM for fusion of high-
level features and low-level features. We assumed that 
the input low-level feature maps is Flow ∈ RH×W×C , and 
the high-level feature maps is Fhigh ∈ R

H
2 ×

W
2 ×C ′

 . Specifi-
cally, we first used bi-linear interpolation to up-sample 
Fhigh twice to generate F ′

high . At this time, the resolution 
of F ′

high is consistent with the low-level features. Then we 
concatenated F ′

high and Flow , and after two MSRB opera-
tions, and finally through MSAM to optimize its feature 
information. Externally, we designed two residual con-
nections to fuse all feature maps and finally get the out-
put Fout ∈ RH×W×C ′′ . Figure 5 shows the overall structure 
of RASM. The process of RASM can be expressed by for-
mula 4:

Here, f k represents the convolution operation with 
kernel size k × k . bk represents a bi-linear interpola-
tion up-sampling operation with an up-sampling scale 
of k × k . θk means that the MSRB operation is executed 
k times in sequence. α represents the MSAM attention 

(4)
Fout = f 1(Flow)⊕ f 1(b2(Fhigh))⊕ α(θ2[b2(Fhigh); Flow])

Fig. 4  The proposed AASPP. Here, H, W, and C respectively represent the resolution height, width, and number of channels of the input feature 
maps. The yellow square represents the convolution operation (k represents the size of the convolution kernel, f represents the number of 
convolution kernels, and r represents the dilated factor). © represents the feature concatenate operation
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mechanism. [; ] represents concatenation operation. ⊕ 
represents the point-by-point addition operation.

Loss function
The binary cross entropy loss function is a loss function 
used in classic image binary classification tasks. In this 
experiment, the segmentation task of the liver can also 
be regarded as a pixel-level binary classification task that 
distinguishes the liver from the background. Therefore, 
we selected the binary cross-entropy loss function as part 
of the loss function used in the experiment. Lbce can be 
defined by formula 5.

where y represents the ground truth value of the pixel in 
the image, and p represents the result of the algorithm 
prediction.

However, simply using the binary cross-entropy loss 
function may be difficult to handle complex medical 
image segmentation tasks. Therefore, we combined the 
use of the dice loss function [9]. The dice loss function 
can effectively deal with the imbalance of the number of 
categories in the medical image segmentation problem, 
and it can improve the training performance of the net-
work. Formula 6 shows the calculation method of Ldcl.

Here, N represents the number of all pixels on the 
input image, yi represents the ground truth value of pixel 

(5)Lbce = −y log (p)−
(

1− y
)

log (1− p)

(6)Ldcl
(

y, p
)

= 1−
2
∑N

i=1 piyi
∑N

i=1 yi +
∑N

i=1 pi

i, yi ∈ {0, 1} . pi represents the algorithm prediction of 
pixel i, pi ∈ (0, 1).

Finally, the total loss function used in this experiment 
is defined as:

Here, α and β are the weight coefficients used to bal-
ance the two loss functions. We tested various values of 
α and β in the training phase, analyzed the training curve 
and selected the best coefficients. Finally, we selected 
α = 0.5 and β = 1.0 as the final weight coefficients used in 
this experiment.

Experiment
Dataset and pre‑processing
We mixed 3Dircadb01 [27] and MICCAI-Sliver07 [28] 
datasets for the experiments. Both data can be applied 
for and obtained on public websites. Sliver07 contains 20 
CT data with liver labels. The number of slices contained 
in each CT varies from 64 to 512, and the slice thickness 
varies from 0.5 to 5.0 mm. 3Dircadb01 includes 20 intra-
venous phase enhanced CT volumes from different Euro-
pean hospitals using different CT scanners. These data 
are provided in dicom format and are accompanied by 
marked images corresponding to each region of interest. 
The resolution of all CT slices in 3Dircadb01 is 512 × 512, 
and the number of slices in each sample varies from 74 to 
260.

In the process of data pre-processing, we first trun-
cated the CT values to the range of [− 200, 250] to 
remove irrelevant tissues. On the other hand, due to the 
characteristics of CT scanning imaging, the boundary 

(7)Ltotal = αLbce + βLdcl

Fig. 5  The proposed RASM. Here, H, W, and C respectively represent the resolution height, width, and number of channels of the input low-level 
feature maps. C′ represents the number of channels for output feature maps. C″ represents the number of channels for output feature maps. The 
yellow square represents the convolution operation (where k represents the size of the convolution kernel, f represents the number of convolution 
kernels), and © represents the feature concatenation operation. ⊕ represents the feature addition operation
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between soft tissues with similar density is not clear, we 
used contrast-limited adaptive histogram equalization 
(CLAHE) [29] to increase the contrast between different 
tissues. We selected the CT image resolution of the input 
model to 512 × 512, and divided all CT data into training 
set, validation set and test set according to the propor-
tion of 8:1:1. In the training phase, in order to expand the 
datasets to prevent over-fitting, we also used data aug-
mentation methods such as random horizontal and verti-
cal flipping, random clipping of the image (the clipping 
ratio is at most 10% of the original image), random trans-
lation (xy axis direction ± 10%) and so on.

Implementation details
The algorithm model proposed in this paper was built by 
Keras [30] (using tensorFlow backend), convolution ker-
nel was set to the initializer method proposed by [31]. 
The optimizer used in the model was the Adam optimizer 
[32]. The initial learning rate was set to 0.001, the epoch 
was set to 300, and the training batch size was set to 6. 
It was worth mentioning that in the training phase, we 
always monitor the loss changes of the model on the veri-
fication set to make different decisions on the learning 
rate and other parameters. Specifically, if the loss of the 
verification set did not decrease for 8 epoch, the learn-
ing rate would be reduced to half of the current value. 
If the loss of the verification set did not decrease for 20 
epoch, The training process needed to stop in advance 
to prevent over-fitting. Finally, the output of the network 
consisted of the probability map of the background and 
foreground. We selected the pixel value whose probabil-
ity is higher than 0.5 as the liver region and the rest as the 
non-liver region. In addition, we also made a simple data 
augmentation to the test set (including horizontal flip, 
vertical flip, etc.), and averaged the results of the model 
on these enhanced data as the final prediction results. 
The hardware environment of this experiment is 8  GB 
Intel i7-9700K, NVIDIA GeForce RTX 2080ti.

Evaluation metrics
We used a total of four objective and general segmenta-
tion model evaluation metrics to evaluate the difference 
between the model prediction results and the ground 
truth. It includes dice similarity coefficient (DSC), inter-
section over union (IOU), recall and precision. DSC 
and IOU can be used to evaluate the overall difference 
between the model prediction results and the ground 
truth. Recall is an important reference index in clinical 
practice. Precision is usually used to evaluate the over-
all quality of the segmentation results. The formulas for 
these evaluation metrics can be expressed as follows:

Here, G and P respectively represents the ground truth 
and the model prediction results. For DSC and IOU, the 
range is 0 to 1, 0 means no overlap, 1 means perfect seg-
mentation. The larger the values of these four indicators, 
the larger the overlapping area between the model pre-
diction results and the ground truth, the higher the simi-
larity, and the greater the accuracy of the segmentation.

Results
In this section, we compared MSA-UNet with other 
advanced segmentation methods. We selected U-Net 
as the baseline model of the experiment, and selected 
three advanced network structures such as CE-Net [33], 
UNet++ [2] and Deeplabv3+ [34] as the comparative 
experimental model. It was worth mentioning that for 
the sake of fairness, we trained each model under the 
same experimental conditions (loss function, learning 
rate, optimizer, etc.). We saved models that perform best 
on the validation set and evaluate them on the test set. 
Finally, the experimental results showed that MSA-UNet 
achieved better segmentation performance, and the per-
formance on the test set was better than other compari-
son models.

Comparative analysis between different models
Firstly, we analyzed the learning process of different 
segmentation methods. Figure  6 shows the increase in 
the accuracy of different models in the training process. 
As shown in the Fig.  6, MSA-UNet finally achieved the 
best effect on the training set, with the highest DICE of 
98.00%, IOU of 96.08%, Precision of 97.17% and Recall 
of 98.85%. At the same time, the accuracy of U-Net 
model was the lowest after convergence, with the DICE 
of 89.23%, IOU of 80.93%, Precision of 92.97% and Recall 
of 86.49%, and the training process was stopped in 46 
epoch. UNet++ was better than U-Net because of its 
internally redesigned skip connection structure, but it 
also stopped the training process in 48 epoch. On the 
other hand, due to the introduction of improved struc-
tures such as residual convolution block and ASPP, the 

(8)DSC(G,P) =
2|G ∩ P|

|G| + |P|

(9)IOU(G,P) =
|G ∩ P|

|G ∪ P|

(10)precision =
|G ∩ P|

|P|

(11)recall =
|G ∩ P|

|G|
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performance of CE-Net and Deeplabv3+ was improved 
accordingly, and their performance surpassed that of 
U-Net and UNet++, to complete the convergence pro-
cess in 64 and 59 epoch, respectively.

Table  1 shows the performance of each model on the 
test set. We used four evaluation metrics to measure the 
accuracy of the segmentation results, DICE similarity 
coefficient (DSC), intersection over union (IOU), recall 
and precision. We predicted and calculated the evalua-
tion metrics for each test sample and finally obtained the 
mean value and standard deviation of the evaluation met-
rics of the model on test set. We presented these results 
in Table  1. As can be seen from Table  1, our method 
achieved better results in liver segmentation than other 
models, achieving the IOU increased 15.14%, the DSC 
increased 8.76%, the precision increased 4.20%, and the 
recall increased 12.36% over U-Net. In all comparison 
models, CE-Net and Deeplabv3+ perform better, and 
the DSC reached 97.67% and 96.94%, respectively. Our 
method was still better than all comparison models, and 
the DSC reached the highest level of 98.00%.

Organ and tissue segmentation with blurred bounda-
ries was a difficult task in medical image segmentation. 
We listed some randomly selected samples of segmen-
tation results. Figure  7 shows an example of the pre-
dicted results of the model. We could observe that the 

prediction image of the MSA-UNet model could retain 
more accurate liver boundary information and achieved 
a more perfect prediction effect than other models. The 
above experimental results verified the superiority of our 
proposed method compared with other methods.

Ablation analysis of the MSA‑UNet
In this part, we used ablation analysis to prove the effec-
tiveness of each component in the MSA-UNet network. 
Similarly, we selected U-Net as the baseline model of the 
experiment, and added modules such as RASM, MSRB, 
AASPP on the basis of U-Net as the comparison models. 
During the training phase, we recorded the loss changes 
of each model to monitor the performance of the model 
and presented the final results in Fig. 8. As shown in the 
Fig. 8, modules such as RASM, MSRB, AASPP could sig-
nificantly improve the segmentation effect of U-Net and 
made it converge to a lower loss value in the training 
process. The ablation experiment proved the effective-
ness of our proposed module. It was worth noting that 
the loss value of MSA-UNet converged to a minimum, 
which proved the effectiveness of combination of multi-
ple modules.

Table  2 compares the performance of U-Net, MSA-
UNet and three ablation experimental models on the test 
set. It could be found that the final MSA-UNet was the 
best among all the selected evaluation metrics. At the 
same time, our proposed modules such as MSRB, AASPP, 
RASM improved the performance of U-Net to some 
extent, which showed the effectiveness of each module.

Discussion
This study proposed a solution to the problem of liver 
segmentation in CT images. Based on U-Net, com-
bined with multi-scale idea and attention mechanism, 
we designed a new segmentation model. We tested this 
method on the public datasets, calculated the segmenta-
tion metrics and compared several advanced semantic 
segmentation methods. The experimental results showed 
that our method achieved the best effect on each met-
rics. The experimental training curve showed that there 
was no over-fitting phenomenon in our model on small 
datasets. We also designed ablation experiments to prove 

Fig. 6  The increase in the accuracy of different models in the training 
process

Table 1  Segmentation results of methods on the test set

The best performance evaluation metrics are in bold

Method DSC [%] IOU [%] Precision [%] Recall [%]

UNet [13] 89.23 ± 4.98 80.93 ± 8.12 92.97 ± 3.87 86.49 ± 9.59

UNet++ [2] 92.10 ± 3.62 85.56 ± 6.04 93.49 ± 4.96 91.23 ± 6.34

DeepLabv3+ [34] 96.94 ± 2.85 94.19 ± 4.45 95.42 ± 4.37 98.63 ± 1.22

CE-Net [33] 97.67 ± 0.81 95.46 ± 1.53 96.76 ± 1.45 98.61 ± 1.22

MSA-UNet 98.00 ± 0.38 96.08 ± 0.74 97.17 ± 0.85 98.85 ± 0.70
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the effectiveness of the proposed module, and combined 
the proposed innovation module with U-Net respec-
tively to analyze its effectiveness. The results of ablation 
experiments showed that each module we proposed can 
improve the performance of U-Net to some extent. The 
above experimental results showed that our method had 
some advantages in automatic liver segmentation, but 
there was still some room for improvement. We planned 
to use a large number of sample data from affiliated hos-
pitals to conduct more comprehensive experiments in the 
future. On the other hand, we planned to lightweight the 
whole network to reduce the number of parameters of 
the model without losing accuracy, so as to better assist 
the automatic, fast and efficient segmentation of the liver.

Conclusion
A network structure, MSA-UNet, which was suitable for 
liver organ segmentation in CT images, was proposed. 
On the basis of U-Net, we combined the ideas of multi-
scale convolution module and attention mechanism to 
design a variety of innovative structures to improve its 
performance. At the same time, we mixed the binary 
cross-entropy loss function and the dice loss function 
in order to alleviate the imbalance between foreground 
and background pixels in medical image segmentation. 
The experimental results on the open datasets showed 
that our proposed method is feasible and effective. Com-
pared with some advanced segmentation algorithms, our 

Fig. 7  Examples of the segmentation results of different methods on the test set

Fig. 8  The decrease in the loss of different models in the training 
process

Table 2  Segmentation results of ablation methods on the test 
set

The best performance evaluation metrics are in bold

Method DSC [%] IOU [%] Precision 
[%]

Recall [%]

UNet 89.23 ± 4.98 80.93 ± 8.12 92.97 ± 3.87 86.49 ± 9.59

UNet + MSRB 97.10 ± 1.02 94.38 ± 1.91 95.76 ± 1.83 98.52 ± 1.51

UNet + AASPP 96.83 ± 2.35 93.95 ± 4.09 96.21 ± 2.81 97.59 ± 3.55

UNet + RASM 97.13 ± 1.07 94.45 ± 1.98 95.60 ± 2.16 98.75 ± 1.18

MSA-UNet 98.00 ± 0.38 96.08 ± 0.74 97.17 ± 0.85 98.85 ± 0.70
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method achieved the best segmentation effect, and was 
better than four advanced segmentation architectures in 
segmentation metrics such as DSC, IOU, recall and pre-
cision. MSA-UNet has proposed a substantial improve-
ment for automatic segmentation of liver organs in CT 
images, and was expected to further become a clinical 
auxiliary tool for liver organ segmentation in the future.
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